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ABSTRACT 

Our group has previously shown that isocyanides are readily adsorbed 

from solutions to Au powder and bind to the Au surface in an end-on fashion 

through the terminal carbon. Later work demonstrated that the eqmlibrium 

constants for the reversible adsorption (eq 1) of electronically inequivalent 

isocyanides could be obtained using the Langmuir isotherm technique. This 

Au(s) + RNC ^ Au(s)/(RNC) (1) 

dissertation describes two projects completed which complement the initial 

findings of this group. 

Initially, several alkylisocyanides (RNC = /i-C4HgNC, /z-CgH^gNC, n-

CgHi^NC, n-CijHjgNC, and n-C^gHgYNC) were synthesized to examine the effect 

of tail length on Au powder adsorption. It was observed that the length of the 

alkyl chain affected not only the Au surface binding af&nity, but also the rate of 

surface saturation and saturation coverage values. Direct competition studies 

were also studied using a "C-labeled isocyanide (n-CigHgyN^C). These studies 

demonstrated the stabilization afforded by substrate-substrate packing forces 

in SAM's formed by the longer chain isocyanides. 

In a second study, di and triisocyanides were s3nithesized to determine 

the effect that the length of the connecting link (i.e. # of (-CHj-) groups) and the 

number of isocyanide groups (as points of attachment) have on Au adsorption 

stability. Reports have shown that diisocyanides with flexible backbones such 

as CSN-(CH2)6-NSC and CsN-(CH2)i2-NsC bind to Au through both -NsC groups 
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producing a SAM with a smaller elipsometric thickness than a diisocyanide 

with an inflexible backbone such as 1,4-phenylene-diisocyanide. Our work in 

this area describes the binding modes, relative binding affinities (Qab) and 

surface coverage values for a series of flexible alkyl and xylyldiisocyanides on 

Au powder surfaces. 
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GENERAL INTRODUCTION 

Dissertatiaii Organization 

This dissertation contains two papers written in the American 

Chemical Society approved pubUcation format which describe the research 

performed at Iowa State University. Preceding these papers is a literature 

review of the chemisorption behavior of allgrlthiol and alkyldithiol Ugands on 

Au(lll) surfaces. This review is intended to provide the reader with the proper 

perspective necessary to fully appreciate the research which follows. In the 

literature review as well as the papers, the literature citations, schemes, tables 

and figures pertain only to the chapters in which they appear. A general 

summary is included after the final paper. 

The Chemisorption of AllQrIthiols and AllQ Îdithiols to Gold Film 

Introduction 

Interest in self-assembled monolayers (SAM's) has grown substantially 

in the past decade. Driving this period of discovery is the relevance of SAM's 

to biological interfaces and membranes, corrosion inhibition, 

electrochemistry, wetting, adhesion, and microelectronic circuitry.®'® This 

intensive examination of SAM's also contributes significantly to our more 

general understanding of the chemistry and physics of complex surfaces and 

interfaces alike. It is interesting to note, however, that the initial discovery of 

SAM's occuLrred some 50 years ago when Zisman first published his work on 

the preparation of a monomolecular layer by adsorption of a surfactant onto a 
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clean metal smface7 In his day, the potential of this work was not fully 

appreciated and his publication garnered only a limited level of interest. 

SAM's are formed by the adsorption of molecules from a homogeneous 

solution onto a substrate. The organization of the SAM arises from the affinity 

of the Tiead' group, the reactive group which chemically attaches to the 

substrate by covalent interaction, combined with the favorable interactions 

between close-packed tail groups. A successftil example of this is based on the 

strong adsorption of thiols (RSH), disulfides (RSSH), and related species 

(dialkyl sulfides, alkyl xanthates, and dialkylthiocarbamates) on the noble 

metals (Ag, Au, and Pt). Discovery of thiol self-assembly can be attributed to 

work done by Allara emd Nuzzo®' although it was a series of papers in 1987 by 

several groups and in 1988 by Whitesides^®"^® that initiated numerous 

studies of thiol SAM's. 

The strength of the bond formed between the sulfur and the gold atom, 

which is beheved to arise from the formation of a siuface thiolate (although 

this is still under debate), is on the order of 40-50 kcal/moL^^ The high afBnity 

of gold and other metals (i.e. Ag, Cu, Pt, Hg, and Fe) toward sulfur adsorption 

allows a diverse range of functional groups to be incorporated into the SAM. 

This combined with the ease in preparation and handling of sulfur species has 

led to an explosion of pubUcations, mostly on alkylthiol SAM's, as noted by 

several recent review articles on the subject.^"* The remainder of this 

introduction describes the influence of the attached functional group on the 

thermodynamic and kinetic factors governing allqrlthiol chemisorption to Au 

films. 
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Characterization of n-all̂ lthiols on Au film 

Due to their high degree of order and stability, SAM's of this class lend 

themselves to a great variety of physical and chemical characterization 

techniques. For simplicity, the focus of most of the information presented will 

be for thiol adsorption on a predominantly Au(lll) sxirface £is these are the 

most extensively studied systems to date. However, some studies of thiol 

chemisorption have also been carried out on Au(lOO) surfaces.^' ̂  

As previously noted, the bonding of the sulfur head group to the gold 

substrate is presumed to be in the form of a metal-thiolate.^^ This is a strong 

interaction, estimated at 40-50 kcal/mol, and the resulting SAM's are quite 

thermally stable. Electron diffraction^"' and scanning tunneling microscopy 

studies reveal that the thiolate monolayer forms a (Vs x V3) R30° 

structiire (Fig. 1), which can extend over hundreds of square nanometers. 

The 5 A spacing between adjacent sulfur atoms in this adlayer is almost three 

times that of the van der Waals diameter of a sulfur atom (3.70 A) impl3ang 

that sulfur-sulfur interactions are minimized. This distance is also greater 

than the distance of closest approach of the allqrl chains (4.24 A). As a result, 

the chains must tilt in order to maximize their van der Waals interactions.^'* ̂  

It is assumed from this proposed structxare, that the sulfur atoms reside in the 

threefold hollow sites of the Au(lll) surface. This assumption is consistent 

with the placement of the thiolate sulfur on the most electron-rich surface 

site.^® 
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Adsorbed thiolate 

o Surface Au atom 

Figure 1. Example of a (VS x V3) R30° adlayer of RSH on Au(lH) 

The structure of the polymethylene chains of chemisorbed alkylthiols 

has been examined quantitatively by elipsometry^^' infrared spectroscopy^^-

Raman spectroscop}^^^, and numerous other techniques^"*"^®. These methods all 

describe a binding scheme in which the alkyl chains are fully extended, tilted 

with respect to the surface normal, and in a nearly all-^rans configuration. 

Molecular dynamics simulations^^ as well as molecular mechanics 

calculations^' also support these findings. To date, all reported measurements 

of adsorbed thiols on Au demonstrate linear changes in filTn thickness with 

increasing polymethylene chain length."'Also, progression bands, 

which are only seen when aliphatic chains occur in an ail-trans 

configuration, were observed in the low fi:equency infirared spectra for 

chemisorbed HS(CH2)igC02CH3.^^ This finding further suggests that a strong 
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correlation exists between the chain conformations in the monolayer and in 

the bulk, crystalline material. 

Infrared spectroscopy probably provides the best evidence for the 

structure of poljonethylene chains of adsorbed alkylthiols. A report by Nuzzo et 

al.^^ suggested that the chains are fiiUy extended and reside in a crystalline­

like environment based on the width and position of the asymmetric CH2 

stretching vibration (2918 cm"^) of n-hexadecanethiol on Au film. He further 

concluded from this spectroscopic information that if there were significant 

nimibers of gauche defects in the overlayer, or if it were not tightly packed, 

then the position of this band would shift to higher frequency and its width 

would broaden substantially. He further concluded that the relative intensities 

of the sjonmetric and orthogonal asymmetric poljmiethylene stretching 

vibrations imply that the chains must also be tilted with respect to the surface 

nonnal.^^ This tilt angle has been calculated by a nimiber of research groups 

xising infrared^^'^® and Raman^^ data and is expected to be optimized at 25-30°. 

It should be noted that in the examination of mixed SAM's containing two 

different thiols with two different alkyl chain lengths, the shorter chain 

species appears well oriented with few gauche defects while the longer chain 

component appears more disordered.^" This observation suggests that two 

component monolayers are generally mixed at the molecular level. 

Surface infrared techniques have also been shown to be useful for 

monitoring the orientation of non-alkane moieties buried in the hydrocarbon 

network."*^"^® The solvent incorporation in SAM's is of considerable interest to 

electrochemists as solvents may be able to penetrate the insulating region of 
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the monolayer. Porter et al." obtained IR spectra of an n-octadecanethiol SAM 

in contact with several solvents (DjO, CDgOD, and CCI4). They noted that 

disorder primarily occurred at the terminal methyl group and concluded from 

this finding that penetration of solvent into the methylene region of the 

monolayer was unlikely. Whitesides also supports this finding in citing that 

SAM contact with water only modestly perturbs the structiire of an 

alkylthiolate SAM."" Bain and coworkers employed a different technique, sum-

frequency generation, to n-octadecanethiol on Au film and found that 

immersion of a SAM into solution produced Uttle effect on the SAM; except 

hexane, which produce slight disorder."*® 

Kinetic and thermodynamic £Eictors affecting the adsorption of alkylthiols on 

Au(lll) surfaces 

Kinetic studies of alkylthiol adsorption onto Au films have shown that in 

relatively dilute solution, two distinct adsorption rates can be observed.^" The 

first, a very fast step, occtirs in seconds to minutes and produces a monolayer 

which has measured contact angles close to their limiting values and a 

measxired film thickness of 80-90% of maximxim. This step, described well by 

diffusion-controlled Langmuir adsorption, was found to depend strongly on 

thiol concentration.^" At a solution concentration of 1 mM this step is 

completed in approximately 1 minute while it requires over 100 minutes to 

produce the same coverage from a 1 |iM solution.®" The second, slower step, 

which lasts for several hours, produces SAM's with complete (100%) surface 

coverage and maximum thickness. This slower step is concluded to be a 

surface crystallization process where alkyl chains order to form a quasi two-
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dimensional crystal on the stirface. It follows that the kinetics of the first step 

is governed by the rate of oxidative addition of the sulfur head group, which is 

dependent on the electron density at the sulfur. On the other hand, the 

kinetics of the second step may be related to chain disorder (the 

aforementioned gauche defects would be one such example) and the different 

components of substrate-substrate interactions (like the attractive van der 

Waals' forces). 

Such kinetic effects were observed during competition studies between 

long and short chain alkylthiols."® The more rapid SAM formation by short 

chain thiols was noted when long and short tailed species were competed 

directly from several different solvents. It was also noted in these studies that 

the absorption isotherms obtained for the competition of C22SH and CijSH were 

quite different for isooctane eind ethanol solvents. The authors offered httle 

kinetic evidence to support the large difference in solvent influence, but did, 

however, offer the hypothesis that thermodynamically, the greater preference 

for the adsorption of the longer chain from ethanol was the direct consequence 

of the poorer solvation of the hydrocarbon chain in ethanol as compared to 

isooctane. Also, it was noted that the surface composition changed with time; 

more long chain thiol displaced short chained thiol on the surface with time. 

The preference for the adsorption of the longer chain thiol after long contact 

times W£is most easily reconciled with predominantly thermodynamic control 

of the composition of the monolayer. It wsis then concluded that, as described 

above, the rapid adsorption process favored the adsorption of the short chained 

thiol (the kinetic product) which was then displaced in favor of the more 
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thermodynamically stable long chain thiol. Again, the thermodynamic 

stability afforded by substrate-substrate packing was presximed to be the major 

contributor. 

The consensus description for the adsorption of alkylthiols on Au film 

states that alkyl chains longer than 10 methylene units appear to be in a quasi-

crystalline state at room temperature, while shorter chain species behave 

more liquid-like which may be responsible, in part, for the thermodynamic 

stability of the subsequent SAM's formed by such adsorbates. A scanning 

tunneling microscopy (STM) study found that shorter chain alkylthiols (CH3 

(CH2)3.9SH) produced SAM's with distinct domain boundaries which appeared 

to nm in the next-nearest neighbor direction as was expected to maximize van 

der Waals interactions.®" These images were quite stable and remained 

unchanged after repeated scanning. It was observed dtuing stabilitiy studies 

that the longer chained of the thiols studied (CgSH and C^oSH) could survive 

high vacuiun conditions for one month, while the shorter chain thiols were 

more liqtiid-like and underwent slow loss from the surface with time.®^ This 

finding supports data obtained from the infrared spectroscopy studies in that 

the longer chain aliylthiols appear to be quasi-crystalline when adsorbed to Au 

films. The observation of this crystalline state of the SAM, which follows the 

slow annealing process in which the surface optimizes substrate packing 

interactions, is intrinsic to the stability of the alkylthiol SAM. 

It is interesting to note that while numerous studies have been 

iindertaken to imderstand the factors which influence thiol and disulfide 

chemisorption on Au film, only one quantitative report of thermodjniamic data 
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exists to date.®^ A study by Schlesser et al.®^ recently reported the temperatiire 

and adsorbate concentration dependence of alkylthiol-Au SAM formation in 

situ using a quartz crystal microbalance (QCM). Although their work noted 

that there were two distinct rates of thiol adsorption attributable to the fast 

thiol-Au reaction and the slow annealing of alkyl tails, they focussed their 

kinetic and thermodynamic studies on the initial fast kinetic process. Thus, 

their QCM-based kinetic studies produced only information about thiol head 

group adsorption and make the assimiption that the fast and slow processes 

for thiol adsoption are significantly decoupled. Also, the temperature 

dependence of the observed rate constant for a fixed thiol concentration 

demonstrated that the rate was clearly not diffusion controlled. 

Using the ratio of the forward and back rates, equilibrium constants 

were obtained for ri-octadecanethiol adsorption at several temperatiires and 

subsequently used in a Van't Hofif plot to determine the enthalpy (aH3j^= -20 

kcal/mol) and entropy (ASaj3= 48 cal/mol-K) of adsorption. The data they 

obtained for this process suggested that the comparatively small firee energy of 

adsorption for this process -5.72 kcal/mol at 298K) is the result of a close 

balance between the enthalpic driving force and an entropic penalty associated 

with the process of self assembly. Also, the value obtained for the enthalpic 

term was significantly lower thsin the early estimates of 40-50 kcal/mol. This 

may be due in part to the use of hexane as a solvent for this work or due to the 

omission of the substrate packing forces, which have also been considered to be 

a significant thermodynamic contributor to thiol chemisorption on Au. 



www.manaraa.com

10 

SAM's formed by the adsorption of ;i-octadecanethiol to metal surfaces 

have been shown to be quite thermodynamically stabile. Examples of this 

stability have also been demonstrated on metal surfaces other than Au. An 

example of this stability include a study in which a silver surface coated with 

octadecanethiolate monolayers could be kept in ambient conditions without 

tarnishing for many months,®^ while even better protection was afforded by 

octadecanethiolate on copper surfaces which sustained nitric acid contact 

without notable damage."* It is clear that alkylthiol monolayers form a 

protective coating on Au and other metal surfaces. The ability to change of the 

functional group attached to the thiol also allows great diversity in resultant 

SAM's, each with the potential for many unique applications. 

Adsorption of dithiols to Au film surfaces 

Attempts to stabilize SAM's for the purpose of coating a surface could be 

found in increasing the number of points of attachment. It seems Likely that if 

an alkylthiol binds strongly to an Au surface, that alkyldithiols should provide 

a SAM with high surface coverages and possibly, greater stability. Recent 

reports of dithiol adsorption to Au surfaces involves either the adsorption of a 

poljnner which has been functionalized with thiol side chains,®"* or the 

formation of a dithiol with only one surface attached sulfiir.®®' 

The recent reports of dithiol adsorption to Au films describe the vise of 

rigid dithiols as molecular wires for electron transfer to a species attached at 

the non-surface bound thiol group rather than as a siarface protectant.®®' 

These reports have concluded that SAM's need not be comprised of alkyl 

groups to promote a SAM with a high packing density. The adsorption rates 
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for dithiols were also reported to be much slower than that observed for their 

alkylthiolate analogues, probably due to the bxilky linking group (such as 

staffanes or 1,4-substituted phenyl groups) necessary to allow one end to 

remain xmreacted upon Au adsorption.®® To date, no thermodjmamic stability 

data have been reported for diallqrlthiols, but the area of research involving the 

use of rigid adsorbates to tether electron donor-acceptor complexes such as 

Ru(NH3)5°' ® to Au electrodes appears to be growing rapidly. 
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ADSORPTION OF re-ALKYL ISOCYANTOES (RNC) 
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Abstract 

The chemisorption of the all^l isocyanides n-butyl (C4HgNC), n-hexyl 

(CgHjgNC), 7i-octyl (CgHi^NC), n-dodecyl (C^gHagNC), and /i-octadecylisocyanide 

(CigHg^NC) on Au powder from 1,2-dichloroethane (DCE) was examined using 

both solution (FT-IR) and surface (Diffuse Reflectance Infrared Foiorier 

Transform or DRIFT) spectroscopic techniques. Meastired values for the 

isocyanides with fewer than 12 carbon units in their alkyl tail show that the 

equilibrium binding constant (K^), siirface coverage (n^j and n^ mol/g^^), and 

qualitative rate of solution-surface equilibriimi in DCE solvent are the same. 

Competition studies between "C labelled CiaH37NC and non-labelled C^HgNC 

suggest that increasing the length of the alkyl tail increases the 

thermodynamic stability of these RNC on Au powder; the ratio of adsorbed 

isocyanide at equiKbrivmi, CigH37N"C/C4HgNC, was found to be 4.1. DRIFT 

spectroscopy of RNC on Au powder shows that isocyanides are boimd strongly 

to the surface at low coverages (less than 70% of saturation coverage) and this 

binding affinity decreases at higher coverages. Studies conducted for 

CigHgyNC and C^HgNC in n-decane, DCE, and nitromethane (MeNOg) solvents 
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also show that solvent polarity affects the rate of monolayer formation, stirface 

coverage, and surface binding strength. 

Introduction 

The spont£ineous adsorption of organic substrates on surfaces to form 

self-assembled monolayers (SAM's) has become an area of active interest in 

recent years.^ One particularly versatile system, adsorbed al^l- or arylthiols 

(RSH) on noble metal (Ag^ or Au^'") surfaces, has become the focus of 

nimieroxis studies for their possible relevence to corrosion inhibition, 

lubrication, optical devices and bio-sensors.^"* The ability of these SAM's to 

function in such apphcations depends in part on their strength of RSH binding 

to the surface. In an early investigation,^ the effect of the R group chain length 

of the /i-alkylthiols, n-CiaHjgSH and n-C22H45SH, on their adsorption to Au film 

was studied. When a Au film was immersed in an isooctane solution 

containing these thiols in molar ratios ranging fi:om 0.01 to 1.0 {n-C isHagSH/n-

CjjH^gSH) the long-chain thiol adsorbed preferentially. Using C/Au ratios 

obtained fi'om XPS data of the adsorbed thiols, the ratio of 

tC22lsurffCi2lso/tCi2]aurftC22]8oi calculatcd to be 2.3. Preferential adsorption of 

n-CjaH^gSH was ascribed to van der Waals' attractions between the long alkyl 

chains in the ordered SAM on the Au surface. Similarly, the 

[^ig^surf ratio was estimated to be 5 when HOCigHggSH and 

HO-CjiH22SH were coadsorbed fi"om the polar solvent ethanol 

A recent Atomic Force Microscopy (AFM) study examined substrate-

substrate interactions between alkyl groups of n-alkylthiols adsorbed on Au 

film.^® Two experiments were the focus of this work: a study of domain 
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formation by individual 7i-alkylthiols at initial stages of SAM formation and a 

study of the coadsorption of two /i-allqrlthiols (C4HgSH and Ci8H37SH) over 

varying times and solution concentration ratios. In the j5rst experiment, Au 

film was immersed into a 0.01 mM ethanol solution containing a single 

n-alkylthiol (C^HgSH, C12H25SH, or CigHg^SH). In all cases, film coverage 

increased with immersion time imtil a maximum coverage was achieved 

(after about 3 minutes). In the case of the two long-chain thiols, C12H25SH and 

C18H37SH, island formation of thiol on the Au surface was observed by AFM 

while the short-chain thiol, C4H9SH, formed mesh-like domains. From these 

images, it was determined that the adsorption rate of the short-chain thiols 

was faster than that of the long-chain thiols, at least at the early stages of SAM 

formation. The authors concluded that initial SAM formation of n-alkylthiols 

on Au film is a diffusion-controlled process which should indeed favor the 

chemisorption of the short-chain species. 

In the second experiment, Au film was immersed for 1 h in ethanol 

solutions containing varying molar ratios of C4H9SH and CigHgySH. AFM 

studies of the resulting SAM's showed that a homogeneous film of only 

Ci8H37S/AU was formed when C^HgSHrCigHg^SH ratios of 1:1 and 10:1 were 

used in solution. Preferential CigH37SH adsorption was again attributed to van 

der Waals' attractive forces between the long CjgHgy groups. At ratios of 20:1 

and 40:1, clear domains were observed indicating the existence of a mixed 

monolayer containing both n-alkylthiols. Solutions containing high 

concentrations of the short-chain competitor (100:1 ratio) produced a SAM 

containing only C^HgS/Au as evidenced by the lack of clear domain boimdaries. 
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It was also noted that the surface composition changed with time; the long-

chain thiol (CigHgySH) displaced the short-chain thiol (C^HgSH) on the surface 

with time. The preference for the adsorption of the long-chain thiol after long 

contact times was most easily reconciled with predominantly thermodjmamic 

control of the composition of the monolayer. 

Recently, the determination of equiKbritmi binding constants for the 

adsorption of a thiol, C18H37SH, on Au film was accomplished using the quartz 

crystal microbalance (QCM) technique.^® By measuring the kinetic rates of 

the forward and back reactions for thiol chemisorption from n-hexane 

solutions, Kgq values were obtained, which yielded and values of 

-20(1) kcal/mol and -48(1) cal/(mol K), respectively. The heat of solvation, 

of the thiol in solution contributes significantly to the of chemisorption of 

allQ^lthiols on Au and this term is both thiol- and solvent-dependent. Thus, the 

measured adsorption enthalpy -20 kcal/mol) consists of both the 

solvation enthalpy (AHgo,, = -8 kcal/mol, estimated) and the monolayer 

formation enthalpy (AH^jS -28 kcal/mol) for this system. As the enthalpy of 

monolayer formation was assimied to be determined predominantly by the 

formation of the Au-S bond under the short-times of the measxarement, the 

AHJ„J term would contain only a small contribution from attractive forces 

between the alkyl tails. 

While studies of /i-alkylthiols on Au indicate that longer n-alkyl groups 

increase binding of the thiol to the surface, there are few data that estabUsh the 

magnitude of this effect. Temperatiore-programmed desorption (TPD) 

studies" of n-CigHgaSH on Au(lll) indicate that van der Waals' attractions 
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between alkyl chains are approximately 0.8 kcal/mol of CHj groups. This 

suggests that the difference of 14 CHg groups between C^HgSH and CisHavSH 

would stabilize the C18H37SH monolayer formation by 11 kcal/mol. Thus, 

equilibrium constants for the binding of the long-chain thiol should be many 

orders of magnitude larger than that of C4H9SH. Because of the difficulties 

inherent in measuring the equilibrivun binding constants for Ai-alkylthiols on 

Au, we tiimed to studies of n-alkylisocyanides on Au. 

5 18 19 
There are few prior reports concerning the adsorption of isocyanides ' 

on noble metal surfaces. In a previous study reported by this group,^° 

isocyanides (CNPh, 1,4-(CN)2C6H4, CNBu') were adsorbed from methanol 

solution onto Au powder and examined using diffuse reflectance infrared 

Foxirier Transform spectroscopy (DRIFTS). These adsorbed isocyanides 

displayed a single v(NC) peak shifted 70 cm"^ to higher energy from that of the 

free isocyanide, which indicates that the isocyanides bind to a single surface 

Au atom through the isocyanide carbon atom. The amovmts of the isocyanides 

adsorbed were shown to increase as the concentration of the isocyanide in 

solution increased; at high concentrations, the Au surface became saturated 

20 
with isocyanide. Further studies'^^ showed that isocyanide surface coverage 

at satiiration decreases (Bu°NC > c-CgHuNC > Bu^NC > 2,4,6-C6H2(Bu')3NC) as 

the size of the R-NsC allqrl or aryl group increases. The ratio of R-NsC to 

surface Au atoms ranged from 1/3.9 for CNBu^ to 1/10 for 2,4,6-CN-CeH2(Bu')3. 

21 
Langmuir isotherm studies showed that the equilibriimi binding constant, 

Kj, was greater for the adsorption of CNPh (27 x 10^) than for 4-CNC6H4NO2 (12 

X 10®) from 1,2-dichloroethane (DCE) solvent. The ability to use infrared 
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spectroscopy to monitor the isocyanide-gold chemisorption eqmlibrium makes 

these systems well-smted for the quantitative study of electronic, steric, and 

all^rl-chain length binding effects. 

The purpose of the present study was to determine equilibrium binding 

constants, K^, (eq 1) for the adsorption of a series of n-alkylisocyanides with 

Au(s) + RNC ^ Au(s)/(RNC) (1) 

R-N=C = rt-C^HgNC, n-CgHigNC, /i-CgHi^NC, /1-C12H25NC, and 

var3dng chain lengths on Au. Gold powder, rather than film, was chosen 

because the high relative surface area allows accxirate measurement of the 

amounts of adsorbed isocyanides in the equilibrium studies. We also 

determined the effect of solvent on values, the amounts of the 

Tz-alkyhsocyanides adsorbed at saturation coverage, the existence of two 

different adsorption regimes, and shifts in v(NC) as a function of surface 

coverage. 

Experimental Section 

General Procedure. All manipulations were performed in air unless 

otherwise stated. All solvents including 1,2-dichloroethane (DCE) were 

reagent or HPLC grade and used as pxirchased. The starting materials 

n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, and 

benzyltriethylammonium chloride were pxirchased fi:om Aldrich and used as 

received. Purchased n-butyhsocyanide (Aldrich) was vacuiim distilled and 
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checked for pxirity (^H and 13C{lH) NMR and FTIR) prior to use. The Au 

22 
powder for this work was prepared as described previously. 

The NMR spectra were obtained on samples in CDCI3 solvent using a 

Nicolet-NT 300 MHz spectrometer with TMS as the internal reference (6=0.00 

ppm). The 13C{1H} NMR spectra were obtained on samples in CDCI3 solvent 

using a Varian VXR-300 MHz spectrometer with CDCI3 as the internal 

standard (6=77.06 ppm). All infrared spectra were recorded on a Nicolet 710 

spectrophotometer equipped with a TGS detector in the main compartment 

and an MCT detector in the auxiliary experiment module (AEM). The AEM 

housed a Harrick diffuse reflectance accessory. All solution ER spectra were 

recorded using a NaCl cell (1.0 mm) in the main compartment with the 

instnament set for 4 cm^i resolution and 128 scans. All DRIFT spectra, using 

256 scans and 4 cm-^ resolution, were recorded on samples in the Harrick 

microsampling cup. The backgroxind spectrum used for the DRIFT spectra 

was taken on clean gold powder. Spectra were routinely baseline- and purge-

corrected. Kubelka-Munk transformations of the DRIFT spectra were not 

possible due to the low intensities of all bands (i.e., the bands were eliminated 

by the transformation). 

Cleaning of Au Powder. Clean Au for the chemisorption studies was 

prepared by treating 10 - 20 g of Au powder vised in previous RNC adsorption 

studies with 50 mL of freshly prepared 'piranha' solution comprised of a 50/50 

mixture of conc. H2SO4 and 30% aqueous H2O2 (caution: add H2SO4 to H2O2) in 

a large beaker with slow stirring. Vigorous foaming and gas evolution 
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occurred for 5 min. Nitrogen was blown over this reaction to reduce gold loss 

due to foaming. The mixture was allowed to stir for 15 additional min and was 

then diluted with 250 mL of distilled water. The gold was filtered on a coarse 

fiit, washed ten times with 50 mL aliquots of water followed by five 50 mL 

methanol washings, and dried under a nitrogen stream with stirring. The Au 

powder was then baked overnight in a 160°C oven. DRIFT spectra of Au 

powder treated in this manner showed no evidence of adsorbed isocyanide as 

indicated by the absence of absorptions in the v(C-H) and v(NC) regions. 

Routine BET surface area measurements of the Au powder were performed on 

a Micromeritics AccuSorb 2100E instrument using Kr as the adsorbing gas at 

77 K. The meastired surface area of the Au powder used in these studies was 

0.33 ± 0.03 m7g. The nimierous treatments with piranha solution have little 

effect on the siirface area of the Au powder. After more than 20 of these 

treatments, maximum coverages obtained for all isocyanides studied showed a 

decrease of approximately 10% with no measxirable effect on K^. Series of 

studies were performed with the same batch of Au powder. 

Ssrathesis of n-alkylisocyanides (RNC). The compoxmds n-he:qrl, n-octyl, 

n-dodecyl, and n-octadecylisocyanide were synthesized using a slightly 

23 
modified version of Procedure B outlined by Weber et al. This route to 

isocyanides utihzes the phase transfer catalysis method of generating 

dihalocarbenes from chloroform and 50% aqueous NaOH. All reactions were 

carried out on a 50 mmol scale based on the primary amine. The following 

23 
describes the alterations made to the published route: After separation and 

dr3dng of the organic phase over K2CO3, the volatiles were removed fi:om the 
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organic solution by vacuum. The resulting oil (usually orange/brown) was 

then dissolved in 25 mL of hexanes, and the solution was chromatographed on 

a 2 X 20 cm silica coltunn (40 PM silica particle size, Scientific Adsorbents Inc.) 

by eluting with hexanes. Fractions fi-om the column were monitored by FTIR 

spectroscopy for isocyanide (v(NC) = 2146 cm"^ in hexanes) and collected upon 

detection. Removal of hexanes vmder vacuum at 25°C produced 

spectroscopically (^H and NMR and FTIR) pure isocyanides in low to 

moderate yields (10-30%). Chromatography was the chosen method for 

purification as pol3niierization of the isocyanides often occurred during the 

recommended" fi'actional distillation. 

All of the isocyanides were isolated as colorless liquids at room 

temperatiire; octadecyhsocyanide is a white solid at temperatures below 20°C. 

Yield and characterization data for each isocyanide are given below. For the 

13c{^H} NMR spectral data, only NC and a-methylene carbon chemical shifts 

are hsted; the remaining carbons in the altyl chain occurred in the expected 

chemical shift regions for aliphatic hydrocarbons (5=19-32 ppm for CH2 and 

5=13-14 ppm for CH3) and were not individually assigned. The "C-labeled n-

octadecylisocyanide (Ci8H37Ns"C) used in the competitive binding studies was 

prepared following the identical procedxire as the non-labeled n-

octadecylisocyanide using "CHCI3 (Cambridge Isotopes Inc.) instead of CHCI3. 

n-Hesylisocyaziide (CGHJANC). 17% 3deld. ER (DCE): v(NC) 2150 cm'^ 

NMR: 5 3.31 (tt, =6.6 Hz, Jhn=2.0 Hz, 2H, A-CHJ), 1.60 (m, 2H, p- CH2), 1.37 

(m, 2H, y- CHj), 1.27 (m, 4H, remaining CHj units), 0.84 (t, = 6.6 Hz, 3H, 

CH3). "C{'H } NMR: 5 155.6 (t, Jcn=5.5 HZ, -NC), 41.4 (t, Jcn=6.3 HZ, a- CH2). 
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n-Octylisocyanide (CgH^NC). 28% yield. IR (DCE): v(NC) 2150 cin"\ 

NMR: 5 3.36 (tt, Jhh=6.6 HZ, JHJF=1.8 Hz, 2H, a- CHj), 1.65 (m, 2H, p- CHj), 1.41 

(m, 2H, f- CHg), 1.27 (m, 8H, remaining CHj units), 0.87 (t, Jgg = 6.3 Hz, 3H, 

CHG). "C{'H } NMR: 5 155.5 (t, Jcn=5.5 Hz, -NC), 41.5 (t, Jcn=6.4 HZ, a- CHj). 

n-Dodecylisocyanide (CIJL^NC). 27% yield. IR (DCE): v(NC) 2150 cm'\ 

'H NMR: 5 3.36 (tt, Jhh=6.6 Hz, Jhn=1-8 HZ, 2H, a- CHA), 1.64 (m, 2H, p- CHJ), 

1.39 (m, 2H, f CH2), 1.25 (m, 16H, remaining CHG units), 0.87 (t, Jhh = 6.3 Hz, 

3H, CH3). '^C{'H } NMR: 5 155.6 (t, Jcn=5.6 Hz, -NC), 41.4 (t, Jcn=6.4 HZ, a- CH^). 

n-Octadecylisocyanide (CIG^^C). 28% jdeld. IR (DCE): v(NC) 2150 cm" 

^H MR: 5 3.36 (tt, J^6.6 Hz, Jhh=1-8 HZ, 2H, a- CHJ), 1.65 (m, 2H, p- CHJ), 

1.41 (m, 2H, y- CHJ), 1.24 (m, 28H, remaining CHJ units), 0.86 (t, JGU = 5.7 Hz, 

3H, CHG). "C{^H } NMR: 5 155.9 (t, Jcn=5.3 HZ, -NC), 41.5 (t, Jcn=6.4 Hz, a- CHJ). 

General Procedure for Adsorption Studies of n-alkylisocyanides on Au 

Powder. Isocysinide solutions for a series of adsorption studies were prepared 

by serial dilution of a 20 mM stock solution. Then, a 1.00 mT, aliquot of the 

desired concentration of isocyanide was added to a 16 mm Pyrex test tube 

containing 500 mg of clean Au powder. The sample tube was capped tightly 

with a teflon-lined screw-cap, shaken on a Vortex Genie 2 mixer (Fisher) 

equipped with a 4-tube platform attachment, and allowed to settle landisturbed. 

For all Leingmuir isotherm studies, mixing times beyond 5 min produced no 

change in surface coverage. After 24h (n-butyl, -hexyl, -octyl, and -dodecyl) or 

72h (n-octadecyl) of settling, a sample of the solution over the gold powder was 

withdrawn from each tube by syringe. The concentration of the RNC in the 

solution was analyzed by FTIR spectroscopy using the v(NC) band intensity. 
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The Au powder from each sample was filtered from the remaining solution 

using a Buchner funnel. Exactly 50 mg of filtered Au powder was then 

introduced through a micro funnel into a microsampling cup for DRIFT 

analysis. A tj^iical series of measurements for Langmuir isotherm plots 

required 6 to 14 solutions which were each analyzed as described above. All 

procedures were performed at room temperature. 

Results 

General Adsorption Studies. Correlation coefficients for Beer-Lambert 

plots of v(NC) absorbances versus RNC solution concentrations (standard error 

is 0.01 mM) in the concentration range studied (0.10-10 mM) are 0.9999 or 

higher in DCE, n-decane, and nitromethane solvents. Calculated extinction 

coefficients, e (M'^cm'^), are given in Tables 1 and 2. These £ values were then 

used to determine the concentration (mM) of RNC, [C], remaining in solution 

after stirring with Au powder and the initial solution concentration (mM) of 

RNC, Cinitial- The amount of RNC adsorbed on the Au siorface, S (mol 

RNC/gAu)> then calculated as the amoxmt of RNC lost from 1.00 mL of 

21 
solution, (Cinitial - [C])(1.00 mL), per g of Au powder used. 

A plot of either AC (Cinitial - [C]) or S versus Cinitial demonstrates 

typical Langmuir behavior^"* for all n-alkylisocyanides in all solvents (Figure 

1.). From these plots, the maximum s\irface coverage, na (mol RNC/gAu)» was 

obtained using the asymptotic value of S. For a given isocyanide and solvent, 

n^ is the same for several separate sample sets and is unaffected by 

H2SO4/H2O2 treatment of the Au powder. DRIFT spectroscopic studies of Au 
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powder with a saturation coverage of RNC shows a v(NC) band for all 

isocyanides at 2223 cm"^ which is about a 70 cm'^ shift to higher energy from 

that (2150 cm'^) of the isocyanide in solution. The absence of a v(NC) band at 

2145-2155 cm'^ indicates that there is no physisorbed RNC on the Au surface. 

Qualitative Kinetic Behavior. In order to ensure that equilibrium was 

achieved in measurements of equilibrium constants, K^, in eq 1, the following 

experiments were performed. By S37ringe, 1.00 mL of a 3.0 mM RNC 

solution was added to a series of tubes (usually 8-12) each containing 300 mg of 

Au powder. These samples were then capped, stirred, and allowed to settle 

undistTirbed. A solution sample was withdrawn from a different tube at 

regular intervals. FTIR analysis of the solution began immediately after 5 

min of stirring and ended after a settling period of 5 days. Values of S 

approached an asymptotic limit with time for all isocyanides in all solvents. 

Changing the amount of Au powder used or the test tube diameter did not 

measurably affect the time required to achieve eqxiilibrium. Plots of coverage 

(S) versus time (min after mixing) revealed that a 24 h settling period was 

necessary to establish equilibrium for the adsorption from solution of all 

isocyanides except CigH37NC, which reqviired approximately 72 h. 

A qualitative comparison of adsorption rates was also investigated using 

isocyanides with the shortest and longest alkyl chains (C4NC and CisNC) in 

solvents of differing polarities; their dielectric constants^® decrease in the 

following order: MeN02 (30) > DCE (10) > n-decane (2). Plots (Fig. 2) of 

coverage (S) versus time (h after mixing) for both the n-butyl and n-octadecyl-
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isocyanides show that the time required to achieve saturation coverage 

decreases with the solvent in the following order: MeNOj > n-decane > DCE. 

However, they also show that the times required to reach a coverage of 

approximately 1.5 x 10"® mol/g^^ are essentially the same for all three solvents. 

While little additional RNC adsorbs beyond this point from DCE solvent, more 

RNC adsorbs from n-decane, and still more from nitromethane. The 

adsorption beyond 1.5 x 10"® mol/g^u occiirs at a much slower rate. It is not 

clear why the saturation surface coverage is greater in MeNOj; however, one 

might speculate that this polar solvent is less strongly associated with the n-

alkyl chains than the less polar n-decane and DCE. Thus, the occluded MeNOj 

is displaced by additional isocyanide, which occxirs at a relatively slow rate. 

For the case of DCE, where httle additional isocyanide adsorbs, significant 

amounts of the solvent presxmiably remain incorporated in the adsorbed 

isocyanide layer. 

Langmnir Treatment of Adsorption Data. The quantitative determination 

of relative binding afBnities of the n-alkylisocyanides makes use of the 

Langmuir equation (eq 2).^^' ^ In this equation, is the eqioilibrium constant 

Ki = S/[C](nis-S) (2) 

for the adsorption of the isocyanide from solution onto the Au powder (eq 1), n^j 

is the saturation coverage (mol RNC/g^u) of RNC on Au powder, [C] is the 

concentration (M or mM) of RNC remaining in solution after contact with the 

Au powder, and S is the coverage of RNC on Au powder (mol RNC/g^u). In this 

expression, the term (nis - S) gives the nimiber of vacant Au binding sites. 

Rearrangement of eq 2 produces the familiar form of the Langmuir equation 
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(eq 3). For a homogeneous adsorbent, a plot of [C]/S vs. [C] yields a straight 

Hne over the entire concentration range. For a heterogeneous adsorbent, 

[C]/S = l/(Kinis) + [C]/nis (3) 

cvu-vatxire should be found in the plot with regions approximating straight 

27 
Unes with different slopes. 

Values of [C] and S were calculated as described above for samples in 

which 500 mg of Au were stirred with 1.00 mL solutions (0.60-4.0 mM) of the 

isocyanide. The linearity of the [C]/S vs. S plots demonstrate that type I 

behavior (according to the classification scheme of Brtonauer)^'* is obeyed for all 

isocyanides studied. Data from a TmnimnTn of 5 independent surface studies 

(at least 30 data points) were used to generate Langmuir isotherm plots for 

each isocyanide in DCE; plots for C NC and C,„NC are shown in Figure 3. 
4 18 

These plots represent Au surface coverages ranging from 70 to 98% of nig. 

Values of nis and (Table 1) were obtained from slopes and intercepts of these 

plots. Calculated errors for all nis and values in all solvents are reported as 

standard deviations. 

As shown in Table 1, the nis and na values agree within experimental 

error supporting the validity of the Langmuir isotherm treatment. The 

equilibrium constants, K^, also appear to be the same for all RNC in DCE. 

However, the errors in the Ki values (Table 1) are large as indicated by the 

near-zero [C]/S intercepts in Figure 3. Attempts to determine and by 

measiiring Ki for the adsorption of C^HgNC and CigHg^NC from DCE at 

temperatures ranging from -40 to 40 °C were unsuccessful due to large errors 
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in the Ki values. However, it was evident that more isocyanide adsorbed on the 

Au powder as the temperature was decreased. 

Adsorption of RNC at Low Concentrations. The Langmuir studies were 

performed on solutions of relatively high concentrations (0.60 - 4.0 mM) which 

yielded surface coverages of 70 - 98% of n^j. When DCE solutions of C^HgNC 

and CigHg^NC in concentrations of only 0.3 to 0.6 mM were contacted with 500 

mg of Au powder all of the isocyanides in the 1.00 mL solutions adsorbed to 500 

mg Au; this was demonstrated by the absence of a detectable v(NC) band in the 

DCE solution. These results show that for surface coverages less than 

approximately 70% of saturation coverage (nis), all of the RNC in solution 

binds to the Au powder (i.e., [C] = 0.00 mM). Thus, at coverages less than 70%, 

RNC binds too strongly to permit the measurement of an equilibrium binding 

constant Kj. However, TnimTrmm values for have been estimated for this 

strongly binding region by xasing the limit of v(NC) detection (noise level of the 

spectrophotometer). These estimates give minimum values of 1.0 x 10®. 

Thus, there are two different adsorption regimes: (a) low coverage (< 70%) 

where RNC is very strongly adsorbed (Ki>10®) and (b) high coverage (>70%) 

where RNC is less strongly adsorbed (K^ = 1.0 x IC* to 5 x 10''). Supporting the 

existence of these two adsorption regimes are DRIFTS studies of C4H9NC on 

gold which reveal a decrease of v(NC) from 2233 cm'^ at coverages less than 

70% nis to 2225 cm'^ at saturation coverage for C4H9NC (Fig. 4). Similar 

behavior is noted for CigHgyNC, with a decrease from 2233 cm"^ to 2218 cm "^ 

being observed (Fig. 4). 
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Discussion 

DRIFT Spectroscopic Studies of RNC on Au. DRIFT spectra of RNC on 

Au powder display a single v(NC) peak for the adsorbed isocyanide. At 

saturation coverage of the surface, the peak for the bound species occurs at 

2225 cm'^ for C4H9NC, CgHigNC, CgHi^NC, CjgHjgNC and at 2218 cm*^ for 

CigH37NC. This blue shift of approximately 70 cm"^ from that of the free 

isocyanides (2150 cm'^) is consistent with end-on RNC binding to a single Au 

20 21 _T___ 
atom. ' This on-top site binding behavior is also observed for CO on Au^® but 

contrasts with the well-studied ^i-alkylthiols (RSH) on Au film which reside in 

three-fold hollows, bridging three Au atoms, as determined by electron 

29 30 12 
diffraction, helium diffraction, and atomic force microscopy (AFM) . This 

surface adlayer structure corresponds to a 3:1 ratio of surface Au atoms to 

adsorbed thiol which has been confirmed experimentally for RSH species on 

12 29 30 
gold film. ' ' In the present studies, the ratios of surface Au atoms to 

adsorbed /i-alkyUsocyanides at saturation coverage are 4.8 (C4HgNC, CgHigNC, 

CgHiyNC), 4.6 (C12H25NC), and 4.2 (CigH37NC) for isocyanide adsorption from 

DCE solutions. These ratios are calculated by assxmaing that the surface of the 

gold powder has a (111) surface structxire, the most thermodyamically stable 

Au surface. Making use of the measured BET siuiace area (0.33 m^/g) for the 

gold used in this work gives 7.6 xlO*® mol surface Au atoms per gram of Au 

21 -
powder. Thus, the 4.2 to 4.8 ratio of surface atoms to adsorbed RNC is similar 

to that observed for CO adsorption (5.0)^® on Au film but significantly greater 

than that (3.0) for alkyl thiols. This means that like the analogous adsorption 

of CO on Au, /i-alkylisocyanides are less densely packed than SAM's 
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containing n-alkylthiols. This difference may result from different patterns 

for RNC and RSH adsorption on Au(lll) or from different surface structures of 

Au(lll) thin films and powdered Au. Although powdered Au is generally 

assumed to have a predominantly (111) structure, this has not been established 

experimentally. The solvent also influences the amoxmt of adsorbed isocyanide 

(Table 2). Whereas the ratio of surface Au atoms to adsorbed isocyanide is 4.8 

(C4H9NC) and 4.2 (CigHg^NC) for adsorption from DCE solvent, these ratios 

decrease to 3.5 (C4H9NC) and 2.6 (CigH37NC) for adsorption from MeNOj 

solvent. As suggested in the Results section, the tighter packing observed 

when using MeNOj may result from the exclusion of more of the polar solvent 

from the /i-alkyl region of the adsorbed isocyanides than occurs in the less 

polar DCE. This allows more isocyanide to adsorb to the stirface. Thus, if the 

assimied (111) surface structure is correct, the ratio of surface Au atoms to 

adsorbed isocyanide (from nitromethane) is very similar to that observed for 

thiols on Au film. 

Low Coverage (< 70% of Behavior of RNC on Au. When 500 mg of Au 

powder is stirred with DCE solutions (1.00 mL) containing RNC concentrations 

less than 0.6 mM, all of the RNC adsorbs to the surface. The amoimts of 

isocyanide adsorbed on Au vmder these conditions correspond to sxirface 

coverages of 70% or less. As coverage increases beyond 70%, a free RNC pesik 

is observed in the solution after Au contact. Due to the very strong adsorption 

of RNC when coverage was less than 70%, insufficient RNC remained in 

solution to be detected which made it impossible to determine values (eq 1) 



www.manaraa.com

for adsorption in this coverage regime. However, a lower limit of 1.0 x 10® was 

estimated (see Results) for for coverages less than 70% of n^g. 

DRIFT spectroscopic studies of adsorbed C4H9NC and C,8H3,NC 

displayed a single peak at 2233 cm"l for all detectable coverages less than 

approximately 70% (Fig. 4). At coverages greater than 70%, the isocyanide 

peak shifts to lower energy until the siarface is essentially saturated at which 

stage the v(NC) value remains constant. The v(NC) value at saturation occxirs 

at 2225 cm'^ for C4H9NC and at 2218 cm"^ for C18H37NC. These results indicate 

that the v(NC) value for C^HgNC and CigH37NC on Au at coverages less than 

70% are higher (2233 cm'^) than for RNC at coverages higher than 

approximately 70% (2225 or 2218 cm'^). In transition meted complexes,high 

v(NC) values are associated with RNC binding to relatively positive metal 

centers, which are good a-electron acceptors from the RNC and poor TC-

backbonders to the RNC. As apphed to the present studies, the higher v(NC) 

values for the isocyanides at low coverage (< 70%) suggests that these 

isocyanides are bound to more positive metal centers than isocyanides bound at 

high coverage (> 70%). At this point, it is not clear whether the low and high 

coverage regimes represent two t3T)es of Au sites or that some reconstruction of 

the sxarface occurs at 70% surface saturation. 

High Coverage (> 70% of Hi,) Behavior of RNC on Au. It was a goal of 

this study to determine whether an increase in the number of methylene units 

in the n-allgrl group of the isocyanide enhances its binding to the gold surface 

as indicated by an increase in with increasing chain length. And we also 

sought to determine the magnitude of this effect. Because RNC binding to the 
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sxirface is weaker in the high coverage regime, it was possible to determine 

equilibrium constants, K^, for adsorption to Au powder when solution 

concentrations gave surface coverages that were greater than 70% of n^g. The 

time required to reach equilibrium (Fig. 2) was 24h for C4HgNC, CgHigNC, and 

CgHiyNC in DCE. The isocyanide, CijHggNC, requires a slightly longer settling 

period (30-36 h) to achieve fully reproducible resxilts. While CigHg^NC gives 

and n^ values that are similar to those observed (Table 1) for the shorter-chain 

RNC (1.5 - 1.6 X 10-6 mol/gAu) after 24 h, higher coverages resulted after 72 h 

settling times (1.77 xlO"® and 1.74 xlO"® mol/g^^). Figure 2 shows that an 

isocyanide surface coverage of 1.5 - 1.6 x 10"® mol/gAu occurs at a fairly rapid 

rate, while binding of additional RNC is much slower and only observed for 

isocyanides with greater than 11 methylene units in their ;i-alkyl group. 

Thus, the isocyanides with longer aliyl chains (Ci2H25NC and CigHg^NC) give 

higher surface coverages (n^^ and n^) but require longer times to establish 

saturation equilibriimi. 

Two processes have been observed to be intrinsic to the formation of n-

alkylthiol SAM's on Au film and both proceed on significantly different time 

scales.®' These processes are the initial adsorption of the thiol head group 

to the Au svuface which occurs after seconds of exposure, and the annealing of 

the n-alkyl chains from a less ordered distribution to a predominately al\-trans 

conformation after hours to days. It is assumed that isocyanides adsorb to Au 

in a similar manner. The initial interaction of the -NsC group represents the 

fast stage of adsorption which is followed by a slower annealing process in 

which van der Waals' interactions between the ;i-alkyl chains are optimized. 
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For the isocyanides with the longest n-alkyl chains (C12H25NC and CigH37NC), 

there is an additional step that is even slower (Fig. 2) and leads to higher 

coverages on the Au powder; from the solvent dependence (Fig. 2) as noted in 

the Results section, this very slow process may involve displacement of solvent 

from the monolayer region by additional isocyanide. 

Equilibriiom constants, (Table 1), for the adsorption of isocyeinides 

from DCE solutions onto Au powder fall in the narrow range 18 x 10^ to 24 x 10^ 

for n-alkylisocyanides from R = n-butyl to /i-octadecyl. Although Ki appears to 

be sHghtly larger for CigHgyNC than the other isocyanides, the errors 

associated with the values are large. However, the more gentle curvature of 

the adsorption isotherm (Fig. 1) for C^HgNC than CigHg^NC suggests that 

C^gHsvNC binds more strongly. In order to examine further the relative 

binding abilities of C4H9NC and CigHg^NC, we measured the amounts of these 

isocyanides that adsorbed when Au powder (500 mg) was stirred with a DCE 

solution containing both isocyanides. It was necessary to use "C-labeled 

Ci8H37N^^C and vmlabeled C4H9NC with v(NC) values of 2113 cm"^ and 2150 

cm'\ respectively, in order to determine their concentrations in solution. The 

labeled Ci8H37N^^C was established to have the same extinction coefficient (e = 

243 ± 3 M'^cm'^) as CigHg^NC in DCE solution. The usefulness of CjgHgTN^C 

was demonstrated in an experiment in which 1.00 mL of a DCE solution 

containing 2.0 mM CigHg^N^C and 2.0 mM CigHgyNC was stirred with 500 mg 

of Au powder and allowed to settle for 3d. As is evident in Figure 5 (top), the 

concentrations in solution of both CigH37N^®C and Ci8H37NC decresise the same 

amo\int after contact with Au, which indicates that equal amounts of both 



www.manaraa.com

35 

isocyanides adsorb on the Au as expected. When the same experiment was 

repeated with 2.0 mM and 2.0 mM C^HgNC in DCE solution and 500 

mg Au powder, the decrease in concentration of was greater than 

that of C4H9NC (Fig. 5 Qjottom)). Using extinction coefficients for their v(NC) 

absorptions the ratio of CigHg^N^^C/C^HgNC on the Au powder was calculated to 

be 4.1. That the system was at equilibrium was demonstrated by experiments 

in which one isocyanide was first added to the Au surface and then the other 

was added; in each case the same Ci8H37N"C/C4H9NC ratio was obtained. The 

Au powder (500 mg) was first treated with a 2.0 mM DCE solution of one RNC, 

stirred, allowed to settle for 3 d, and then filtered. This Au powder, already 

satxirated with one isocyanide, was then treated with a 1.00 mL solution 

containing both Ci8H37N^^C and C4H9NC in concentrations that provided equal 

total amoimts (2.00 x 10"^ mmol, both originally on the surface and in the added 

solution) of the two isocyanides. The mixture was stirred, allowed to settle for 

3 d, and the concentrations of the two isocyanides remaining in solution were 

measxired by FTIR. In both experiments, the Ci8H37N"C/C4H9NC ratio on the 

Au powder was 4.1, thereby demonstrating that this ratio represents an 

equilibrium distribution of the two isocyanides. These results also show that 

both the strongly adsorbed (< 70% coverage) and weakly adsorbed (>70% Ui, 

coverage) isocyanides achieve equilibrium. 

The above Ci8H37N"C - C4H9NC experiments, as well as the studies, 

indicate that C18H37NC binds more strongly to Au powder than the shorter 

n-alkylisocyanides, but the difference is relatively small. As noted in the 

Introduction, a similar small preference was observed^ for the long-chain 



www.manaraa.com

36 

C22H45SH over C12H25SH, as indicated by a value of 2.3 for the ratio 

t^22J8urf[^i2l8o/[Ci2]gurf[C22]goi when the adsorption was performed in isooctane 

solution; however, it was not established that this system was at equiHbrium. 

On the other hand, a TPD study^^ cited in the Introduction suggests that the 

difference in van der Waals' forces (~ 11 kcal/mol) between the n-alkyl chains 

in CigH37SH and C4HgSH woxild make values for the adsorption of CigHg^SH 

many orders of magnitude larger than those for C4HgSH. It should be noted, 

however, that the TPD study involves desorption from a SAM on Au(lll) into 

the gas phase. In studies of RSH or RNC adsorption from solution, values 

are determined not only by the free energies of adsorption on the surface but 

also by the free energies of solvation. For a non-polar solvent, the long-chain R 

group will have a higher solvation energy which will reduce the K^; this woxild 

make the difference between the Kj values for the short- and long-chain n-alkyl 

groups much smaller than predicted by van der Waals' energies alone. The 

values and CjgHgyN^^C - C4H9NC results in the present study show that 

adsorption from DCE solution favors CigHgyNC over C^HgNC by a factor of 4.1 or 

less. Perhaps this factor would be larger on Au film where SAM formation 

would be more favorable. 

However, the preference for C^gHg^NC can be increased by increasing the 

polarity of the solvent. This is illustrated by the increase in the 

CigH37NC/C4H9NC ratio of values (Table 2) from approximately 1.0 in 

n-decane to about 5.3 in the more polar solvent nitromethane. This increase 

shows that long-chain /z-£ilkylisocyanide adsorption is favored by polar 
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solvents, which have a reduced abiKty to solvate the long, non-polar /z-alkyl 

chains. 

Summary 

These studies of n-al^hsocyanide adsorption on Au powder establish two 

adsorption regimes. At surface coverages less than 70% of saturation coverage 

(ni3 or n^), the equilibrium binding constants, K^, are very high (> 10®) and the 

v(NC) values for the adsorbed isocyanides are relatively high (2233 cm"^). At 

surface coverages greater than 70% of n^,, the v(NC) values are at least 8 cm'^ 

lower than those in the low coverage regime, and the Kj values (1.0 x 10'* - 5 x 

lO"*) are substantially lower than those at low coverage. Measurements of Kj 

values in the high coverage regime using DCE solvent show that values are 

the same (-18 x 10^) for /i-alkylisocyanides ranging from C^HgNC to Ci2H25NC, 

while (24 x 10®) appears to be somewhat higher for CigHg^NC. This 

conclusion is supported by competitive adsorption studies of C^HgNC and 

Ci8H37N"C which show that the Ci8H37N"C/C4H9NC ratio of the adsorbed 

isocyanides is 4.1. In all of these studies, the equilibrium preference for 

CigHgyNC over C4HgNC is small. The effect of the solvent is to increase the 

preference for CigHgYNC adsorption with increasing solvent polarity as 

illustrated by the increase in the C18H37NC/C4H9NC ratio of values (Table 2) 

from n-decane (1.0) to nitromethane (5.3). Solvents also affect the amount of 

isocyanide adsorbed at saturation coverage (Table 2); thus, values of n^^ (mol 

RNC/g^u) decrease with the solvent in the order: nitromethane (2.82 x 10"®) > n-

decane (2.44 x 10"®) > DCE (1.77 x 10"®). These results suggest that some 

solvents, e.g., nitromethane, are more likely to be excluded from the 
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hydrocarbon region of the monolayer and replaced by additional n-

alkylisocyanide. 
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Table 1. Values of e, nj,, n^, and Kj for Adsorption of RNC on Au from DCE 

Solvent 

e (M'lcm'i) n a, b X 106 _a_ n a, c X 106 Is KiXlO-3 

C4NC 246 ±5 1.54 ±0.05 1.53 ±0.03 18.6 ± 5.0 

CsNC 244 ±6 1.51 ±0.05 1.52 ±0.03 17.8 ± 5.6 

CsNC 239 ±3 1.54 ±0.03 1.54 ±0.03 18.4 ±8.5 

CI2NC 242 ±5 1.61 ±0.06 1.60 ±0.04 18.4 ±10.0 

CisNC 242 ±3 1.74 ±0.06 1.77 ±0.03 24.1 ± 12.4 

^ mol RNC/g^„. 

'' Obtained from S vs Cinitial plots (Fig. 1). 

" Calculated from Langmuir isotherm plots (Fig. 3). 
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Table 2. Values of e, n^, and for Adsorption of C4H9NC and CjgHa^NC on 

Au from /i-decane, DCE, and MeNOj Solvents 

e (M'^cm-i) n ^ X10® n, c X 10® Is KiXlO-3 

C^HflNC 

rt-decane 321 ±6 1.60 ±0.04 1.63 ±0.04 10.1 ±7.6 

DCE 246 ±5 1.54 ±0.03 1.54 ±0.03 18.4 ±8.5 

MeN02 224 ±5 2.12 ±0.08 2.13 ±0.06 10.0 ± 2.8 

C,3H3,NC 

/i-decane 363 ±6 2.30 ±0.10 2.44 ±0.05 9.9 ±3.3 

DCE 242 ±3 1.74 ±0.06 1.77 ±0.03 24.1 ± 12.4 

MeN02 229 ±4 2.89 ±0.08 2.82 ±0.06 52.5 ± 16.3 

^ mol RNC/gA„. 

'' Obtained from S vs Cinitial plots (Fig. 1). 

Calculated from Langmuir isotherm plots (Fig. 3). 
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Figure 1. Plots of coverage S (mol RNC/gAu x 10®) versus Cinitiai (mM) 

adsorption of C4H9NC and CigHg^NC on Au from DCE solvent. 
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Figure 2. Plots of coverage S (mol RNC/gAu x 10®) versxis time (h) for 

adsorption of C4H9NC (top) and C18H37NC (bottom) on Au from three solvents. 
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Figure 3. Langmuir isotherm plots of [C]/S ((mM-gAu)/mol) versus [C] (mM) 

for C^HgNC (top) and CigHgyNC (bottom) in DCE. 
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Figure 4. Plots of v(NC) and coverage (as %ni^) versus Cinitiai for C4HgNC (top) 

and CigH37NC (bottom) in DCE. 
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Figure 5. Solution FT-IE spectra of equimolar CigHg-NC and C^gHg-N^C in 

DCE before and after contact with Au powder (top) and equimolar C^H^NC and 

CigHg-N^C in DCE before and after contact with Au powder (bottom). 
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KINETIC AND EQUILIBRIUM STUDIES OF THE 
ADSORPTION OF BI- AND TREDENTATE 

ISOCYANIDES ON GOLD POWDER 
A paper submitted to Journal of the American Chemical Society 

Allyn C. Ontko and Robert J. Angelici 

Abstract 

DRIFTS studies of diisocyanides (CsN-(CH2),-NsC, where x = 2, 4, 6, 8, 

and 12; m- and p-xylyKNOg, xylyl = -CHg-CgH^-CHj-) and triisocyanides (1,1,1-

tris(isocyanomethyl)ethane (TripodCNOg) and tris[2-isocyanoethyl] amine 

(TrenCNOg)) adsorbed on Au powder show that all of their -NC groups are 

coordinated to the surPa je. The v(NC) values (cm"^) for all of the adsorbed 

ligands are - 2150 cm'^ which indicates that each of the -NC groups is boxmd 

through the carbon to a single Au atom. The satxiration coverages (n^^) for the 

diisocyanides decrease as the Linking -(CHg),^- group lengthens from x = 2 to 

X = 12. At saturation coverage, the number of moles of -NhC groups 

coordinated for CijCNOg is similar to that for the monoisocyanide /i-CigHg^NC, 

while twice as many -NC groups are adsorbed for CjCNOg than 7i-Ci8H37NC. 

Qualitative kinetic measurements show that all of the monoisocyanide, 

n-CiaHg^NC, adsorbed on Au powder is displaced by C4(NC)2 within 90 min. 

However, only 39% of the diisocyanide m-xylyKN^Oj is displaced by C4(NC)2 

even after 120 h demonstrating that only 34-39% of the diisocyanide 

m-xylyl(N"C)2 is exchangeable while the remaining 61-66% of the diisocyanide 

is kinetically inert to exchange. The existence of two adsorption regimes, low 
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coverage (61-66%) and high coverage (above 61-66%), on the Au powder is 

supported by a variety of evidence. Pseudo-equilibrium constants (Q^b), which 

probably include both kinetic and thermod3mamic factors, for the adsorption of 

diisocyanides on Au increase significantly as the -(CHg)^- link between the -NC 

groups becomes shorter. The C2(NC)2 ligand has the highest binding afBLnity 

(Qgb). These studies also show that the relative binding affinities of the 

isocyanides increase as the number of -NC groups in the ligand increases 

(RNC < R(NC)2 < R(NC)3). 

Introduction 

Understanding the factors which influence the stability of self-

assembled monolayers (SAM's) on metal surfaces is necessary if these 

systems sure to employed in practical applications. Toward achieving this goal, 

numerous studies of the chemisorption of n-alkyl- and arylthiols (RSH) on gold 

surfaces have been reported.^"* It has been observed that the structure of the 

aryl or alkyl group in the thiol influences the stability of the self-assembled 

monolayers.®'® In principle, the stability of a SAM could be enhanced by 

introducing more than one -SH group into the adsorbate which would lead to 

multiple points of attachment on the Au surface. However, reports of mtilti-

thiol ligand adsorption on Au sxufaces have involved either a polymer that has 

been functionahzed with thiol side chains^ or a rigid dithiol in which it is 

possible for only one svdfiir atom to attach to the surface.®"^" To date the 

thermodynamic stability afforded by multiple points of attachment has yet to be 

determined. 
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As surface adsorbates, isocyanides (R-NsC) have a very different 

surface-binding head group than their well studied thiolate counterparts. 

Results from this group^^*" have demonstrated that, like the organosulfur 

systems, modifications of the alkyl or aryl R group affect the surface coverage 

and stability of the resulting isocyanide monolayer on Au powder. In addition, 

studies of n-alkylisocyanide adsorption from 1,2-dichloroethane (DCE) solution 

on Au powder have shown that two distinct regimes exist for the 

chemisorption of RNC on Au." At surface coverages less thsin approximately 

70% of saturation coverage (n^g), the equilibrium binding constants, (eq 1), 

Ki 
Au(s) + RNC ^ Au(s)/(RNC) (1) 

are very high (> 10®) and the v(NC) values (2233 cm'^) for the adsorbed 

isocyanides are also higher than those observed at coverages greater than 70% 

of n^^. At the higher svirface coverages, the v(NC) values are at least 8 cm'^ 

lower than those in the low coverage regime, and the measured values 

(1.8 X 10"* - 2.4 X 10"*) are substantially lower. 

Despite their excellent ligation properties, few studies of the binding of 

hi- and tridentate isocyanide ligands in coordination complexes," and even 

fewer describing their adsorption on metal sxarfaces,^°' have been reported. 

Most notable of these is a report^® in which it was discovered that diisocyanides 

with flexible backbones such as CsN-(CH2)6-NsC and CsN-(CH2)i2-NsC bind to 

Au film through both -NsC groups. It was determined using elipsometry that 

a SAM formed by the adsorption of a diisocyanide with a flexible polymethylene 

link between the -NsC groups produced a smaller measured eHpsometric 

thickness than a diisocyanide with an inflexible backbone such as 
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1,4-phenylenediisocyaiude. This report, however, focxised on the utility of 

diisocyanides as tethers for the attachment of gold and nickel cluster 

complexes to a Au film surface. 

The present report describes Au powder chemisorption studies of a 

series of polymethylene (CHj)^ and xylylene (-CH2-CgH4-CH2-)-linked 

diisocyanides, as well as two tripodal triisocyanides (Chart 1). All isocyanide 

species studied were designed with the intention that adsorption to the Au 

surface could occur through all available isocyanide (-NHC) groups. Solution 

and surface (DRIFT) FTIR measurements of the relative surface binding 

affinities of these isocyanides were conducted by competing two isocyanides 

(one ^®C-labeled) for the Au powder surface. Also, amounts of the isocyanides 

adsorbed at satiiration coverage were determined for the range of di- and tri-

isocyanide structures. And qualitative rates of exchange of adsorbed 

isocyanides in the low and high coverage regimes were measured. 

Experiinental Section 

(Jenerai Procedure. All manipulations were performed in air unless 

otherwise stated. All solvents including 1,2-dichloroethane (DCE) were 

reagent or HPLC grade and used as purchased. The reagents 

ethylenediamine, 1,4-butanediamine, 1,8-octanediamine, m- and 

p-xylylenediamine, tris(2-aminoethyl)amine, l,l,l-tris(hydroxyethyl)ethane, 

benzenesulfonyl chloride, sodium azide, lithium aluminum hydride and 

benzyltriethylammomum chloride were purchased from Aldrich and used as 

received. Pxirchased hexamethylenediisocyanide (Aldrich) was vacuum-

distilled and checked for purity (^H and NMR and FTIR) prior to use. 
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The Au powder for this work was prepared^^ and cleaned as described 

previously. Routine BET sxirface area measurements of the Au powder were 

performed on a Micromeritics AccuSorb 2100E instrument using Kr as the 

adsorbing gas at 77 K. The measured surface area of the Au powder used in 

these studies was 0.29 ± 0.03 mVg. 

The NMR spectra were obtained on samples in CDCl^ solvent using a 

Nicolet-NT 300 MHz spectrometer with TMS as the internal reference (5=0.00 

ppm). The "C{^H} NMR spectra were obtained on samples in CDClg solvent 

using a Varian VXR-300 MHz spectrometer with CDCI3 as the internal 

standard (5=77.06 ppm). All infrared spectra were recorded on a Nicolet 560 

spectrophotometer eqxiipped with a TGS detector in the main compartment 

and an MCT detector in the auxiliary experiment module (AEM). The AEM 

housed a Harrick diffuse reflectance accessory. All solution FTIR spectra 

were recorded using a NaCl cell (1.0 mm) in the main compartment with the 

instrument set for 4 cm"^ resolution and 128 scans. All DRIFT spectra, using 

512 scans and 4 cm"^ resolution, were recorded on samples in the Harrick 

microsampling cup. The background spectrum used for the DRIFT spectra 

was taken on clean gold powder. Spectra were routinely baseline and purge 

corrected. 

Synthesis of di- and triisocyanides (RCNOj and RCNOg). The triisocyeuiide, 

l,l,l-tris(isocyanomethyl)ethane (Tripod(NC)3) was synthesized as described 

previously.^® The compotmds 1,2-diisocyanoethane (C2(NC)2), 

1,4-diisocyanobutane (C4(NC)2), 1,8-diisocyanooctane (Cg(NC)2), 
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l,12-(iiisocyanododecane (CijCNOj), m-xylylenediisocyanide (m-xylyl(NC)2), 

p-xylylenediisocyanide (p-xylyKNOg), and tris(2-isocyanoethyl)anune 

(TrenCNOg) were s3nithesized from the di- and triamines (10 mmol) using a 

slightly modified version of that previously described/" The following 

describes the alterations made to the pubUshed route: After separation and 

drjring of the organic phase over KjCOg, the volatiles were removed from the 

organic layer under vacuum. The resulting oil (usually orange/brown) was 

then dissolved in 25 mL of CHjClg (dried with CaHj) and chromatographed 

using CHgClg on a 2 X 10 cm silica column (40 mm silica particle size, 

Scientific Adsorbents Inc.). Fractions from the column were monitored by 

FTIR spectroscopy for isocyanide (v(NC) = 2150 cm"^ in CH2CI2 ) and collected 

upon detection. Removal of solvent under vacuum at 25°C produced 

spectroscopically (^H and NMR and FTIR) pure isocyanides in low to 

moderate 3rields (30-60%). The synthesized diisocyanides were isolated as 

colorless liqmds or solids at room temperature and their spectroscopic data 

matched those that were previovisly reported for C2(NC)2,^® C4(NC)2 and 

C8(NC)2," CI2(NC)2,'° and m- and p-xylyl(NC)2'®. The ^^C-labeled 

m-xylylenediisocyanide (m-xylyKN^Oj) and 1,12-diisocyanododecane 

(CI2(N^^C)2 ) used in the competitive binding studies was prepared using the 

same procedure as that used for the nonlabeled diisocyanides, except ^^CHClg 

(Cambridge Isotopes Inc.) was substituted for CHCI3 as the dichlorocarbene 

source. 
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Tri8[2-isocyanoethyl]amine (TrenCNOg). 33% yield. IR CDCE): v(NC) = 2150 

cmNMR: 5 3.50 (s, 2H, a-CHa), 3.00 (s, 2H, p-CHj). "C{^H} NMR: 8 158.0 

(t, Jcjf=5.5 Hz, -NC), 53.8 (s, 2H, p-CHj), 41.0 (t, Jci;=6.3 Hz, a-CH^). MS: m/z 177 

(M+H). 

DRIFT Analysis of Di- and Triisocyanides on Au Powder. All DRIFTS data 

were obtained on 200 mg of Au powder which was treated with a 

1.0 mM DCE solution of the desired di- or triisocyanide in a 16 mm Pyrex test-

tube. The sample was then capped tightly with a teflon-lined screw-cap, 

shaken for 30 s on a Vortex Genie 2 mixer (Fisher) and allowed to settle at 

room temperature. The Au powder from each sample was then filtered from 

the remaining solution using a Buchner funnel and filter paper. Exactly 50 

mg of the dry Au powder was then introduced through a micro funnel into a 

microsampling cup for DRIFT analysis. 

Langmuir Isotherm Studies of Di- and Triisocyanides on Au Powder. Stock 

solutions (approximately 20 mM) of each isocyanide ligand were made by 

diluting a weighed amount of the compound to 25.00 mL in a volumetric flask 

with 1,2-dichloroethane (DCE) solvent. Extinction coefficients (e in M'^ cm"^, 

Table 1) of the v(NC) band were obtained for the compounds from Beer-Lambert 

plots. Other solution concentrations were prepared by serial dilution of the 

20 mM stock solution. A 1.00 mL aliquot of the desired isocyanide 

concentration (ranging from 0.5 to 3.0 mM) was added to a 16 mm Pjrrex test 

tube containing 500 mg of clean Au powder. The sample tube was then capped 

tightly with a teflon-lined screw-cap, shaken for 30 s, and allowed to settle 

undisturbed. After 24 h, a sample of the solution over the gold powder was 
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withdrawn from each tube by S37ringe. The concentration of the mono-, di-, or 

triisocyanide in the separated liquid was determined by FTIR spectroscopy 

using the v(NC) band intensity. A typical series of measurements for the 

Langmuir isotherm plots required 8 to 14 solutions which were each analyzed 

as described above. All procedures were performed at room temperature and 

are similar to those previously reported for the adsorption of monoisocyanides 

on Au." 

Relative Binding AfGnity (Q )̂ Studies. Since all of the isocyanides exhibit 

v(NC) absorptions (Table 1) at ~ 2150 cm'^, it was necessary to prepare "C 

analogs of n- C,3H3,NC," Ci2(NC)2, and m-xylyKNOg in order to determine 

concentrations of these isocyanides and xmlabeled competing isocyanides 

remaining in solution after contact with Au powder; the "C-labeled 

isocyanides showed a v(NC) absorption at - 2113 cm'^ (Table 1). For the 

competitive binding studies, the "C-labeled isocyanide was /i-Ci8H37N^^C (for 

71-C4H9NC), Ci2(N"C)2 (for n-CigHg^NC), or m-xylyKN^Oa (all other di- and 

triisocyanides). A 1.00 mL ahquot of a DCE solution containing the desired 

concentrations of both isocyanides was added to a 16 mm P3n:ex test tube 

containing 200 mg of clean Au powder. The sample tube was then capped 

tightly with a teflon-lined screw-cap, shaken for 30 s and allowed to settle 

undisturbed. After at least 12 h of settling, a sample of the solution over the 

gold powder was withdrawn by s3Tdnge. Time-dependent studies (see next 

section) showed that steady-state concentrations of the isocyanide in solution 

and on the surface were achieved within 4 h; 12 h settling periods ensured the 

attainment of a steady-state. The solution was analyzed for concentrations of 
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the two competing isocyanides ([CJ and [0^]). The remaining solution was 

then removed from the Au powder by filtration and the powder was analyzed 

by DRIFTS. The ratio (SySb) of the amounts of two diisocyanides on the Au 

powder was simply the ratio of their absorption intensities (DRIFTS) in the 

v(NC) region, which were adjusted for their different extinction coefficients 

(Table 1). For competition studies involving di- and triisocyanides, the 

intensity of the triisocyanide band was multiplied by 0.67; for studies of mono-

and diisocyanides, the absorbance of the monoisocyanides was multiplied by 

2.0. This method of calculating S/S^ asstmies that the extinction coefficients 

of the isocyanides are the same as they are in solution (Table 1). That this 

assumption is valid is supported by the results of competition studies between 

/i-CigHgyNC and Ci2(N"C)2 and between Cs(NC)2 and m-xylyKN^Og which gave 

the same S/S^ ratios by both the DRIFT method and by measuring the solution 

concentrations of the isocyanides. The solution measiirement method gave 

large errors when relatively high isocysmide solution concentrations were 

used or when it was necessary to use a significantly higher concentration of 

one of the competing isocyanides. Calculation of the relative binding affinities 

(Qgb) are described in the Results. 

Time Dependent Competition Studies. For studies in which both isocyanides 

were added simultaneously to the Au powder (as in the studies) a 1.0 mL 

aliquot of a solution containing the desired concentrations of both competitors 

was added to a series of 16 mm P3n"ex test tubes, each containing 200 mg of 

clean Au powder. Each sample tube was capped tightly with a teflon-lined 

screw-cap, shaken for 30 s and allowed to settle undisturbed. After a specific 
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settling time, the solution over the gold powder was analyzed for the 

concentrations of the two isocyanides, and the Au powder was separated by 

filtration with a Buchner funnel sind analyzed by DRIFTS. 

For studies involving sequential addition of the isocyanides to the Au, a 

16 mm Pyrex test tube containing 200 mg of Au powder was treated with a 

1.0 mL aliquot of a 1.0 mM (diisocyanide) or 2.0 mM (monoisocyanide) solution 

of the first isocyanide. This sample tube was then capped tightly with a teflon-

lined screw-cap, shaken for 30 s and allowed to settle undisturbed for at least 

12 h. The powder was then filtered using a Buchner ftmnel and filter paper 

and analyzed by DRIFTS to ensure that the surface was covered by the 

isocyanide. Absence of a v(NC) absorption at 2150 cm'^ verified that no 

physisorbed isocyanide was present on the powder. This 200 mg sample of Au 

was then treated with a 1.00 mL aliquot of a DCE solution that contained the 

appropriate concentration of the competing isocyanide (i.e., the isocyanide not 

already present on the Au surface) and a concentration of the first isocyanide 

[1.0 mM - (1000 mM/M x ((0.200 g^ x nig)/(0.00100 L))] (where n^^ is the 

saturation coverage in mol R(NC)2/gAu determined by the Langmuir 

isotherm technique in Table 2) that would make the total amounts (in solution 

and on the Au surface) of the two isocyanides equal (1.0 mM). In competition 

studies of the monoisocyanide ri-CigHg^N^C and the diisocyanide C4(NC)2, total 

concentrations of 7i-CigH37N"C and C4(NC)2 were 2.0 mM and 1.0 mM, 

respectively. The sample tube was then capped tightly with a teflon-lined 

screw-cap, shaken for 30 s and allowed to settle undisturbed for a specific 

length of time. The powder was then filtered using a Buchner funnel and 
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filter paper and analyzed by DRIFTS to determine the relative amounts of the 

two isocyanides on the surface. A series of samples was prepared and 

analyzed in the same manner at different times after treatment with the 

solution of the second isocyanide. 

Results 

Solution. Concentration Measurements. Extinction coefEdents (Table 1) from 

Beer-Lambert plots of v(NC) absorbances versus known isocyanide solution 

concentrations (0.10 - 10.0 mM) were reproducible over the course of these 

studies and were used to determine the initial concentrations and the 

concentrations [C] (mM) of isocyanide remaining in solution after stirring 

with Au powder. The amount of RNC adsorbed on the Au surface, S (mol 

RNC/gAu)> was calculated as the amount of RNC lost from 1.00 mL of solution, 

[(Cinitial - [C]) X 1.00 mL]/10®, per g of Au powder used. 

DRIFT Spectroscopic Studies of the Isocyanides on Au Powder. DRIFT spectra 

of Au powder treated with DCE solutions of di- and triisocyanides show a 

single broad (- 30 cm'^ width at half-height) v(NC) absorption for all species 

studied (Table 1). The v(NC) value of the surface boimd isocyanide is shifted to 

higher energy (about 70 cm'^) from that of the free di- and triisocyanides in 

solution. There is no v(NC) absorption (2150 cm'^) corresponding to unboimd 

-NsC groups. Thus, all -NsC groups are chemically bonded to the Au surface. 

The similarity of the v(NC) value to that of monoisocyanides (RNC) on Au 

powder"' suggests that each isocyanide carbon is adsorbed on one Au atom. 

The v(NC) values decrease with surface coverage of the di- and triisocyanides 

from ~ 2235 cm'^ at coverages less than 70% of saturation coverage to the values 
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listed in Table 1 at saturation coverage. This dependence of v(NC) on coverage 

was studied in detail for the adsorption of n-alkylisocyanides on Au powder. 

Determination of Saturation Coverage (n^J. Attempts to determine 

equilibrium binding constants, K^, for the di- and triisocyanides using 

Lsingmuir isotherm plots, [C]/S vs. [C], as was done for the mono-

isocyanides,^* were unsuccessful due to the strong binding affinities of the 

polyisocyanides for the Au powder. This resulted in plots with near-zero 

intercepts and large errors. However, the slopes of these plots gave consistent 

values for the amoimt of isocyanide adsorbed at saturation coverage (n^,, mol of 

isocyanide ligand/g^^) (Table 2). 

Determination of Relative Affinities (Q )̂ of Isocyanides for Au Powder. la 

order to determine relative affinities of the mono-, di-, and triisocyanides for 

Au powder, we measiired (see Experimental) the amoimts of the isocyanides 

adsorbed when a mixture of two isocyanides in DCE solution was added to 

clean Au powder at room temperature. The relative affinities of the two 

isocyanide ligands are expressed as measvired values for the pseudo-

equihbria involving competition of mono- and diisocyanides (eq 2), two 

Qab 
2 (RNC) / Au(s) + R(N"C)2 2RNC + R(N"C)2/AU(S) — (2) 

Qab 
R(NC)2 + R(N13C)2 / AU(S) — R(NC)2 / AU(S) + R(N"C)2 (3) 

Qab 
2/3 R(NC)3 + R(N13q2 / AU(S) — il; 2/3 R(NC)3 /AU(S) + R(N̂ 3Q̂  (4) 
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diisocyanides (eq 3), and di- and triisocyanides (eq 4). The measured values 

(eqs 5-7) are probably not equilibrium constants because it is likely that the 

amounts of the two isocyanides on the surface are determined by both 

thermodynamic and kinetic factors as described in the next section. In eq 5-7, 

Qab = Sa[C]b/Sb[C]/ (5) 

Qab = Sa[C]b/Sb[C]a (6) 

Qab = S,[Clb/Sb[C].2^' (7) 

[C]g is the concentration (mM) of the unlabeled isocyanide in solution and is 

the amoxmt adsorbed on Au, while [Cl^is the concentration (mM) of RN"C or 

in solution after Au contact, and is the amount of adsorbed RN"C 

or R(N^^C)2 on the Au. The measured values (Table 3) have been 

normalized to m-xylyKNOg (Q^b = 1-0) to give relative Q^i, values for all 

isocyanides studied. For isocyanides whose reactions could not be measured 

directly, the relative values were obtained by multiplying appropriate 

measured values. For example, the relative value for /i-Ci8H37NC 

(0.0017) was calculated by multipl3dng measiired values for the n-

CisHg^NC/CJN^Oa (0.076) and Ci2(NC)2/m-xylyl(N"C)2 (0.022) reactions. 

Kinetic ElfFects on the Competitive Adsorption of Two Isocyanides. Ihe 

measured values for the mono-, di-, and triisocyanides in Table 3 were 

determined using solutions with varjang concentrations of the competing 

isocyanides. That these are not equilibrium constants is shown by competitive 

adsorption studies in which DCE solutions containing 1.0 mM m-xylyKN^'Og 

and increasing concentrations of Cg(NC)2 were contacted with clean Au 
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powder (Table 4). Instead of remaining constant, the measured values 

decrease modestly as the concentration of CgCNOg increases which means that 

more m-xylyKN^Oj than CgCNOj adsorbs at the higher concentrations of 

CgCNOa than is expected for a system at equilibriiun. 

In order to understand the role that kinetics may play in these changes 

in Qab two competition experiments were conducted in order to determine 

whether reversible exchange occurs between an isocyanide adsorbed on the Au 

and an isocyanide in solution. In the first study, 200 mg of Au powder was 

treated with a 1.0 mM solution of one of the isocyanides, m-xylyKN^^Oj or 

m-xylyKNOj. The Au (with saturation coverage of the first isocyanide) was 

filtered and subsequently treated with a solution containing both 

m- xylyKN^^Oj and m-xylyKNOj in concentrations such that both isocyanides 

are present in the system (solution + surface = 1.0 mM in 1.0 mL solution) in 

equimolar amoxants (see Experimental). DRIFTS spectra of the Au powder 

show how the relative amounts of these isocyanides on the surface change 

with time. As seen in the uppermost curve in Figure 1, only 34% of the 

initially adsorbed m-xylyKN^Oj is displaced by m-xylyl(NC)2 even after 120 h of 

contact with the Au; the expected 1:1 ratio of these isocyanides is not achieved 

under these conditions. Similarly, about 34% of the initially adsorbed 

m-xylyKNOj is displaced relatively rapidly (lowermost curve in Figure 1) fi*om 

the Au by m- xylyKN^Oj but the expected 1:1 ratio is not achieved even after 

many hours. The 1:1 ratio is achieved, however, when an equimolar solution 

of the two isocyanides is contacted with clean Au powder (middle line in 

Figure 1). From these experiments, it is evident that approximately 34% of 



www.manaraa.com

63 

adsorbed isocyanide is readily displaced. Thus, whichever isocyanide adsorbs 

to the Au initially can be only partially (- 34%) displaced. 

In the second series of experiments (Fig. 2), two different isocyanides. 

m-xylyKN^^Og and C4(NC)2, with similar values were studied in the same 

way. When m-xylyKN^Og wsis on the surface initially, only 39% of it was 

displaced by C4(NC)2. When C4(NC)2 was initially on the Au, only 36% of it was 

displaced. These two experiments estabhsh that only 34-39% of the adsorbed 

isocyanide is displaced by another isocyanide imder these conditions. When 

an equimolar solution (1.0 mM of each in 1.0 mL of DCE) of these isocyanides is 

contacted with clean Au powder, C4(NC)2 initially predominates on the surface 

(middle curve in Fig. 2), but with time £in approximately 1:1 ratio is achieved, 

as expected from their values. The Q^i, value may not be an eqioilibriiun 

distribution of the two isocyanides on the surface because if one of the 

isocyanides, e.g. C4(NC)2 in this case, adsorbs more rapidly than the other, 

only part (36-39%) of the adsorbed isocyanide can exchange rapidly enough 

with the other isocyanide in solution to achieve equihbrium. 

For comparison with the above m-xylyl(N"C)2/C4(NC)2 studies, the 

competitive adsorption of the monoisocyanide, n-Ci8H37N"C and C4(NC)2 were 

examined. When a solution containing both C4(NC)2 (0.82 mM in 1.0 mL 

solution for a 1.0 mM total concentration of C4(NC)2) and 7i-Ci8H37N"C 

(2.0 mM) was contacted with 200 mg of Au powder previously saturated with 

C4(NC)2, only C4(NC)2 was observed on the surface by DRIFTS at all settling 

times (5 s to 48 h). When a 1.0 mL solution containing both C4(NC)2 (1.0 mM) 

and n-Ci8H37N"C (2.0 mM) was added to 200 mg of clean Au powder, 33% of the 
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isocyanide on the surface at 5 s and 1 min settling times was /i-CigHg^N^C, but 

at times from 10 min to 48 h, only C4(NC)2 was detected on the Au powder. 

When a solution containing both C^CNOj (1.0 mM) and n-Ci8H37N"C (1.76 mM 

in 1.0 mL solution for a 2.0 mM total concentration of ;i-Ci8H37N^®C) was added 

to 200 mg of Au powder previoxisly saturated with Ti-CigHg^N^C, 33% of the 

n-CigH37N^®C was displaced by C4(NC)2 after 10 s; 60% was displaced at 10 min, 

and it was completely displaced by C4(NC)2 after 90 min. Thus, 33% of the 

/I-Ci8H37N^^C was displaced very rapidly (10 s), while the displacement of the 

remaining n-Ci8H37N"C by C4(NC)2 took significantly longer (90 min). This is 

the same pattern that was observed with the diisocyanide m-^lyl(N"C)2; 33-

39% is displaced relatively rapidly by C4(NC)2 and the remainder is displaced 

undetectably slowly. However, the displacement of the monoisocyanide 

(n-Ci8H37N"C) is much faster than the diisocyanide (m-xylyKN^Og) 

displacement in both regimes. For the initial 33-39%, ri-Ci8H37N^^C 

displacement occurs within 10 s while m-xylyKN'^Og reqxiires 4 h. For the 

remaining 67-61%, n-Ci8H37N"C is completely displaced in 1.5 h while no 

m-xylyl(N^^C)2 is displaced, even after 120 h. 

Discussion 

Saturation Coverages (n^g) for Di- and Triisocyanides on Au Powder. In a 

previous study^^ of n-alkylisocyanides on Au powder, it was established that 

n-C^HgNC is able to achieve a saturation surface coverage (n^g) of 1.53 x 10"^ mol 

RNC/g^u while the longer chain n-Ci8H37NC had a slightly higher n^g value, 

1.77 X 10"® mol RNC/g^u- For these same isocyanides in the present study, the 

n^, values (Table 2) were slightly lower, 1.1 x 10"® and 1.2 x 10"® mol RNC/gAu, 
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respectively, because of the smaller Au powder surface area (0.29 vs. 0.33 

mVg^„). For the series of CN-(CH2)j-NC isocyanides, the saturation surface 

coverage (iii,) is lowest for the longest chain derivative, C^CNOj. Its n^, value 

(Table 2) is 0.50 x 10"^ mol RNC/g^, which corresponds to 1.0 x 10"® mol -NC 

groups/g^^Q. Thus, approximately the same number of -NC groups adsorb on 

the Au powder surface at saturation coverage for n-C^HgNC and C^aCNOj. 

This presumably means that the diisocyanide is not adsorbed in a way that 

stretches the -(CH2)i2- chain across the surface, but instead is kinked (Chart 2) 

such that the arrangement of the -NC groups is similar to that for 

/i-alkyhsocyanides on Au powder. However, it should be noted that the 

arrangement of n-alkylisocyanides on Au powder has not been established. 

As the -(CHa)^- chain length becomes shorter, the number of -NC groups 

that adsorb to the surface per gram of Au increases: Ci2(NC)2 (1.0) < C8(NC)2 

(1.1) < C6(NC)2 (1.3) < C,(NC)2 (1-8) < C2(NC)2 (2.4). The shortest-chain 

diisocyanide C2(NC)2 has twice as many -NC groups on the surface at 

saturation coverage as the monoisocyanides 7i-C4HgNC and n-Ci8H37NC. This 

requires that the arrangement of the -NC groups on the Au must be different 

for C2(NC)2 and the monoisocyanides. These different arrangements are not 

apparent in the DRIFT v(NC) values as they are essentially the same for 

n-CigHg^NC (2218 cm'^) and C2(NC)2 (2216 cm'^) (Table 1). Also, the geometry of 

the C2(NC)2 adsorbate requires an angular attachment (Chart 2) of the 

isocyanide groups to the surface, but this attachment does not significantly 

affect the v(NC) value of C2(NC)2 as compared with the other isocyanides (Table 

1). While Au powder is presumed to have a predominantly (111) surface, this 
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has not been established experimentally; we therefore do not speculate on the 

arrangement of the -NC groups on the surface. 

As for the CN-(CH2)3j-NC adsorbates, both -NC groups in the 

xylyldiisocyanides, m-xylylCNOg and p-xylyKNOj, are bonded to the surface as 

established by the position of the v(NC) bands (Table 1) and the absence of v(NC) 

absorptions corresponding to uncoordinated isocyanide groups. The n^^ value 

for m-xylyl(NC)2 (0.93 x 10"® mol RNC/g^n) is slightly larger than that for the 

p-xylyKNOj isomer (0.84 x 10"® mol RNC/g^„), which is perhaps related to the 

orientation of the arene ring and the space that it requires over the surface. 

The observation that both the m- and p-xylyldiisocyanides adsorb more -NC 

groups (1.9 and 1.7 mole -NC groups/g^u, respectively) than the 

monoisocyanides (1.2 x 10"®) suggests that the arene rings do not cover a 

significant portion of the svirface or /i-CiaHa^NC and n-C^HgNC are not densely 

packed on the Au surface. 

The tridentate isocyanides, Tripod and Tren, adsorb through all three of 

their -NC groups and achieve stirface coverages (1.0 x 10"® and 0.8 x 10"® mol 

-NC groups/gA„) that are about the same as or sHghtly less than those of the 

monoisocyanides. They do not exhibit the dense packing of C2(NC)2 (2.4 x 10"® 

mol -NC groups/g^„), and their DRIFT spectra (Table 1) on Au exhibit v(NC) 

values that are comparable to those of the mono- and diisocyanides. 

Kinetic Elfifects cm the Competitive Adsorption of Two Isocyanides on Au 

Powder. As described in the Results section and in Figures 1 and 2, when Au 

powder (200 mg) saturated with m-xylyKN^Oj is treated with 1.0 mL of a DCE 

solution containing 1.0 mM m-xylyKNOj or C4(NC)2 and sufficient 
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m-xylyl(N^^C)2 to give the same number of moles of this "C-Iabeled isocyanide, 

only 34-39% of the m-^lyKN^^Og is displaced after approximately 4 h but no 

further displacement occurs, even after 120 h. These and related experiments 

(see Results) show that 34-39% of the total adsorbed isocyanide + Sj,) 

undergoes relatively rapid (< 4 h) exchange with a second isocyanide in 

solution. The remaining 61-66% of the initially adsorbed isocyanide is 

kinetically inert to exchange imder these conditions. These two distinctly 

different rates of isocyanide exchange appear to correspond to the two regimes 

that were identified in solution studies^^ of the adsorption of n-al^lisocyanides 

(R-NsC) on Au powder. In the low coverage regime (< 70% of n^j), equilibriiun 

constants (eq 1) for monoisocyanide adsorption (K^ > 10®) were high and v(NC) 

values for the adsorbed species were at least 8 cm'^ higher than those observed 

for coverages above 70% of n^g. Also, in the high coverage regime (> 70% nj^), 

the values (1.8 x lO"* - 2.4 x lO'') were substantially smaller than those at low 

coverage. It appears that the m-xylyKN^^Oj adsorbed in the high coverage 

regime undergoes exchange while m-xylyKN^Oj at low coverage (< 70% n^,) 

does not exchange with solution isocyanide under these conditions. 

In order to determine if a monoisocyanide undergoes exchange more 

rapidly than the diisocyanide, m-xylyKN^Og, Au powder (200 mg) satxirated 

with n-CigHg^N^^C was treated with a 1.0 mL DCE solution containing both 

(2.0 mM) and C4(NC)2 (1.0 mM), 33% of the n-CigHg^N^C was 

displaced by C4(NC)2 within 10 s, but 60% displacement required 10 min, and 

complete displacement of the ri-CigHg^N^C occurred within 90 min. Thus, in 

both the high and low coverage regimes, the monoisocyanide, n-Ci8H37N^^C, is 
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displaced more rapidly than the diisocyanide, m-xylyKN^^Oj. In the high 

coverage regime, C4(NC)2 displacement of n-CigHg^N^C occurs within 10 s 

while m-xylyKN^^Og requires 4 h. In the low coverage regime, n-CjgHgyN^C is 

displaced in 1.5 h, while m-xylyKN^^Oj is not displaced even after 120 h. 

While the experimental results in Figures 1 and 2 show that only 33% of 

m-xylyl(N"C)2 is displaced by m-xylyl(NC)2 (1.0 mL of a 1.0 mM DCE solution) 

also containing sufficient m-xylyKN^Oj to give equal amoimts of the two 

isocyanides even after 120 h, it is possible to displace all of the m-xylyKN^Oj 

with higher concentrations of m-xylyl(NC)2. If the concentration of the 1.0 mL 

solution of m-xylyKNOj is increased to 5.0 mM (the /n-xylyKN^Oj 

concentration remains the same), 63% of the m-xylyKN^^Oj is displaced within 

4 h; 72% is displaced within 4 h with a 10.0 mM solution and 100% is displaced 

within 4 h with a 20.0 mM solution. These experiments demonstrate that 

while only 33% of the m-xylyKN^^Oj is displaced at 1.0 mM m-xylyKNOj, more 

and more of the adsorbed isocyanide is displaced within a 4 h period as the 

concentration of the displacing m-xylyKN^^Og ligand is increased up to 20.0 

mM where all of the m-xylyKN^^Og is displaced. Thus, even the strongly 

adsorbed isocyanide in the low coverage regime can be displaced and the rate 

of this displacement depends on the concentration of the displacing 

m-xylyl(NC)2. 

The relative binding affinities (Q^b) of pairs of isocyanides were 

determined by adding 1.0 mL of a DCE solution containing both of the 

isocyanides to 200 mg of Au powder. After being allowed to stand for at least 
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12 h, the measured amounts of the isocyanides in solution and on the Au were 

used to calculate the relative values (eq 2-7) in Table 3. For the adsorption of 

the m-xylyKN^^Oj and C4(NC)2 pair of isocyanides, Figure 2 shows that 

C4(NC)2 adsorbs more quickly than m-xylyKN^^Oj but some of it is displaced to 

give steady-state amoiints of the isocyanides on the Au and in solution within 

approximately 4 h. The values are measured at times (> 12 h) when the 

system has reached steady-state. It is not known, however, whether or not the 

system (eq 2-4) is at equilibrium. Based on the kinetic studies discussed above, 

we woxild expect that the isocyanide that adsorbs first on the surface (C^CNOg 

in this case), up to 61-66% coverage (low coverage regime) would not imdergo 

exchange with the isocyanides in solution; only the most weakly adsorbed 

isocyanide at coverages above 61-66% (high coverage regime) would equilibrate 

with the isocyanide in solution during the 12 h settling time. Because of the 

kinetic inertness of the isocyanides in the low coverage regime, the measured 

Qab values are probably not eqmhbrium constants. Also, as noted in Table 4, 

these values are not constant for a range of concentrations; however, the 

dependence of on concentration is not large, which suggests that the Q^b 

values are useful, semi-quantitative measures of the binding affinities of 

mono-, di-, and triisocyanides. 

Mono-, Di-, and Ttiisocyanide Binding AfBnities (0,̂ ) for Au Powder. Since 

the relative values (Table 3) for the mono- and triisocyanides depend on the 

solution concentration units (e.g., mM or M) that Eire used in eqs 5 emd 7, a 

quantitative comparison of the relative binding affinities of the mono-, di-, and 

triisocyanides based on their values is not tiseful. However, other evidence 
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supports the trend in values which indicate that, in general, the binding 

affinities of these ligands increase with the number of -NC donor groups in 

them: RNC < R(NC)2 < RCNOg. Evidence that the diisocyanide, CiaCN^Og, 

binds more strongly than the monoisocyanide n-CigHgyNC comes from an 

experiment in which a solution containing equal concentrations (1.0 mM) of 

the two isocyanides were contacted with 200 mg of Au powder for 12 h. More 

than 90% of the surface was covered with and only traces of 

/i-C^gHgyNC werc present. When a solution containing a 5.0 mM/1.0 mM ratio 

of /i-CigH37NC/Ci2(N"C)2 was contacted with clean Au powder, the 

n-CigH37NC/Ci2(N^®C)2 ratio on the surface was 1.9. That the triisocyEinide, 

TripodCNOg, binds more strongly than the diisocyanide, 7n-xylyl(N"C)2, is 

evident from the experiment in which a DCE solution containing 1.0 mM 

m-xylyl(N"C)2 and only 0.67 mM TripodCNOg is contacted with Au (200 mg). 

Despite the lower concentration of Tripod(NC)3 in solution, it is the 

predominant (60%) isocyanide adsorbed on the Au. 

In an earlier study," we observed that values (eq 1) for the adsorption 

of /i-alkyHsocyanides on Au powder depend only slightly on the length of the 

M-alkyl chain; for example, competitive adsorption of equimolar n-CjgHg^N^C 

and /1-C4H9NC in DCE solution produced a n-Ci8H37N"C/n-C4H9NC 

equilibrium ratio of only 4.1 on the Au surface. In the present studies of 

diisocyanides, the binding affinities (Q^b) increase with a decrease in the 

length of the -(CHa)^- chain: Ci2(NC)2 (0.022) < C8(NC)2 (0.060) < C6(NC)2 (0.092) < 

C4(NC)2 (1.0) < C2(NC)2 (1.4). These results show that the of C2(NC)2 is 64 

times larger than that of Ci2(NC)2, and the binding affinity of diisocyanides is 
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much more sensitive to the chain length than the monoisocyanides. As noted 

in the satiuration coverage (n^,) discussion, the chain is presumably kinked 

(Chart 2) in C^gCNOj to give a surface coverage of -NC groups that is nearly the 

same as that of the monoisocyanides. The short-chain diisocyanides, 

especially CjCNOj, are imable to kink but they adsorb much more strongly 

than their long-chain analogs. Perhaps it is the greater loss of entropy that 

accompanies the adsorption of long-chain diisocyanides from solution that 

accoimts for their less favorable adsorption. The lower values for the long-

chain diisocyanides may also be influenced by kinetic factors. When a 

diisocyanide adsorbs through only one -NC group, it is still labile on the entire 

Au powder surface imder the conditions of the measurements, as 

discussed in the previous section. However, once both -NC groups are boxmd, 

the ligand is no longer able to exchange with isocyanide in solution on the low 

coverage (up to 61-66%) portion of the surface. Thxis, the rate of conversion of 

mono-coordinated to di-coordinated diisocyanide could control the amount of a 

given diisocyanide on the kinetically inert 61-66% portion of the sxirface. It is 

likely that the short-chain diisocyanides will bind their second -NC groups to 

the surface faster than the long-chain derivatives. Thus, if kinetic factors 

affect they will favor adsorption of the short-chain diisocyanides. 

The m- and p-xylyKNOj diisocyanides have values, 1.0 and 0.17, 

respectively, that are similar to those of C4(NC)2 (1.0) and C6(NC)2 (0.092). All 

foiir ligands have approximately the same nximber of carbon atoms (4-6) 

linking their -NC groups, which may account for their similar binding 

affinities. Although the xylyKNOg ligands are structurally different than the 
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CN-(CH2)J-NC diisocyanides, their similar Q^b values suggest that there is no 

direct interaction between the arene group and the Au surface. 

Of the two triisocyanide ligands, Tripod(NC)3 has the higher value 

(1.5). TripodCNOg was chosen for study because it forms a very stable complex 

with the triangle of Os atoms in Os3(CO)g[Tripod(NC)3].^®® Since the Os-Os 

distance (2.86 A) in this triangle is very similar to the Au-Au distance (2.88 A) 

on Au (111), it was expected that Tripod(NC)3 would bind unusually strongly. 

However, this was not observed in the values. The other triisocyanide, 

Tren(NC)3, does not have a structure that matches Au-Au distances on 

Au(lll). With 5 atoms (four C and one N) linking two -NC groups, this ligand 

has structtu-al features similar to those in m-xylyl(NC)2, and its (1.2) is only 

slightly larger than that (1.0) of m-xylyKNOg. Other evidence that Tren(NC)3 

binds only slightly more strongly m-xylyKN^Oj was obtained from the 

experiment in which a DCE (1.0 mL) solution containing 1.0 mM of both 

m-xylyl(N"C)2 and Tren(NC)3 was contacted with Au (200 mg). Despite equal 

concentrations of the isocyanides in solution, there is only maginally more 

Tren(NC)3 (55%) than m-xylyl(N"C)2 (45%) on the sxirface. 

Summary 

Adsorption studies of the di- and triisocyanides in Chart 1 on Au powder 

show that all of the -NHC groups are bound to Au atoms. The nxmiber of moles 

of the short-chain diisocyanide C2(NC)2 adsorbed at saturation coverage (n^g) is 

equal to that of the monoisocyanide n-Ci8H37NC (Table 2); this means that twice 

as many -NsC groups are bound to the surface with C2(NC)2 than 
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/i-CigHgyNC. For the CsN-(CH2)j-NsC diisocyanides, the saturation coverage 

values (njg) decrease as the linking -(CHg)^- group lengthens from x = 2 to 

X = 12. The number of moles of -NsC groups coordinated for CijCNOj is 

essentially the same as that for the monoisocyanide 7i-Ci8H37NC. Kinetic 

measurements show that all of the monoisocyanide n-CigH37NC adsorbed on 

Au powder is displaced by C4(NC)2 within 90 m. However, only 39% of the 

diisocyanide m-xylyKN^^Og is displaced by C4(NC)2 even after 120 h (Fig 2). 

This result, together with those of other experiments, demonstrate that only 

34-39% of the diisocyanide m-xylyKN^Og is exchangeable while the remaining 

61-66% of the diisocyanide is kinetically inert to exchange xinder these 

conditions. This kinetic inertness made it impossible to measiire equilibrixim 

constants for the competitive adsorption of two isocyanides on Au powder 

(eq 2-4). However, values, which probably include both kinetic and 

thermodsmamic factors, have been determined (Table 3). In general, the 

binding afiBnities of the isocyanides increase with the number of -NC donor 

groups on the Hgands (RNC < R(NC)2 < R(NC)3). For the diisocyanides, the Q^i, 

values increase significantly as the -(CH2)j- link between the -NC groups 

becomes shorter; both thermodsmamic and kinetic argimients account for this 

trend. Because of its structure, the C2(NC)2 hgand is presumably forced to bind 

to the Au surface with the -NC groups tilted away from the surface normal 

(Chart 2). Despite this geometry, it has the highest binding affinity (Q^b) and 

highest saturation coverage (n^g) of any of the CN-(CH2)j-NC ligands. DRIFTS 

studies of these Ugsoids on Au powder show that the positions (cm'^) of their 

v(NC) absorptions (Table 1) are very similar, even for C2(NC)2, which suggests 
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that each of the -NC groups binds through the carbon to a single Au surface 

atom. 
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Table 1. bifrared Data for the Isoc^^anides in DCE and on Au Powder 

Isocyanide e", v(NC)" cm'̂  DRIFTS v(NC)'' cm"  ̂

n-C^HgNC 246±3 2150 2225 

n-CigHa^NC 241±3 2150 2218 

C2(NC)2 657±8 2152 2216 

C^CNOs 521±3 2150 2217 

C6(NC)2 521±3 2150 2215 
C,(NC\ 523±4 2150 2218 

C,2(NC)2 525±4 2150 2219 

m-xylyKNOa 523±3 2150 2220 

p-xylyKNOg 525±5 2150 2213 

TripodCNOg 758±8 2147 9999 

TrenCNOg 751±7 2150 999Q 

m-xylyl(N"C)2 524±4 2115 2187 
C^CN^^C)^ 522t4 2111 2182 

244±3 2113 2187 

^ In DCE solvent. 
'' DRIFTS of Au powder with saturation coverage of the isocyanide. 
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Table 2. Amounts of the Isoc^anides Adsorbed on Au Powder at Saturation 

Coverage (n ,̂) 

Isoc^^anide n ,̂ imoVgjJ X10® 

'1-C18H37NC 1.2±0.1 
/l-C^HgNC 1.1±0.1 
CaCNOj 1.2±0.1 
C,(NC)2 0.90±0.03 
Ce(NC)2 0.63±0.04 
CgCNOs 0.55±0.04 
CI2(NC)2 0.50±0.02 

m-xylyl(NC)2 0.93±0.04 
p-^lyKNOa 0.84±0.04 
TripodCNOg 0.34±0.03 
TrenCNOg 0.26±0.03 

m-xylyKN^^C)^ 0.90±0.04 
CI2(N"C)2 0.53±0.02 

1.2±0.1 
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Tables. Measured and Relative Values (eq 2-7) for the Competitive 

Adsoiption of RNC, RCNO,, and RCNC), on Au Powder from DCE Solvent 

c/c. Measured Relative 

Isocyanide (a) mM/mM 

TripodCNOa 1.0/1.0" 1.5" 1.5 

CaCNC)^ 1.0/1.0" 1.4" 1.4 

TrenCNOg 1.0/1.0" 1.2" 1.2 

C,(NC)2 1.0/1.0" 1.0" 1.0 

m-xylyKNOg 1.0/1.0" 1.0" 1.0 

p-xylyl(NC)2 4.0/1.0" 0-17" 0.17 

CsCNC)^ 4.0/1.0" 0.092" 0.092 

CsCNC)^ 8.0/1.0" 0.060" 0.060 

CI2(NC)2 10.0/1.0" 0.022" 0.022 

n-C,8H3,NC 5.0/1.0" 0.076'' 0.0017 

^l-C^HgNC 1.0/1.0= 0.24"= 0.00041 

" b =m-xylyl(N"C)2. 

b = CI2(N"C)2. 

' b = n-C.,H3,N"C. 

^ relative to m-xylyI(N"C)j. 
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Table 4. Measured Values (eq 3 and 6) for the Competitive Adsorption of 

C8(NC)2 m-aylyKN^Qg (b) on Au Powder from DOE Solvent with 

Increasing Concentrations of CgCNQj 

Measured 

C„ mM Qi. 

4.0 0.092 

6.0 0.087 

8.0 0.059 

10.0 0.052 

20.0 0.049 

30.0 0.047 

50.0 0.040 

80.0 b 

a 

b 
C^, = 1.00 mM for all measurements. 

No m-xylyl was observed on the Au powder using DRIFTS. 
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Chart 1 

Ca^-(CH2)x-N=C 

C2(NC)2, X = 2 Cg(NC)2, X — 8 

C4(NC)2, X = 4 Ci2(NC)2, X = 12 

CgCNOa, X = 6 

NN N 
CC C 

TrenCNOa 

CHo 

I ^ 

NN N 
C c c 

Tripod(NC)3 

/)-xylyl(NC)2 

m-xylyl(NC)2 
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Chart 2 

w-CjgH37NC 

N N N N N N N N  c c c r r c c r 
Au Surfece 

CI2(NC)2 

N N N N 
c c c c 

N N 

Au Surface 

C2(NC)2 

Au Surface 
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Figure 1. Surfsice ratio Sj/Sj-otai ~ m-s^yKNOj and b =: m-xylyKN^Oj) 

solution contact time (h), where S, -f S,, s Sy^,. 
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Figure 2. Surface ratio S^/Srotai C4(NC)2 and b = m-jgrlylCN^Oj) vs. solution 

contact time (h), where S, + 
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GENERAL SUMMARY 

Self-assembled monolayers (SAM's) have been a subject of great interest 

during the past decade. Driving this period of discovery is the relevance of 

SAM's to biological interfaces and membranes, corrosion inhibition, electro­

chemistry, wetting, adhesion, and microelectronic circmtry. One particularly 

successful system, /i-alkylthiolates on Au film, has been a major focus due to 

its ease of preparation, high thermal stability and the availability of several 

methods for characterization. Like n-alkylthiolates, n-alkylisocyanides (R-

N/C) have variable length ;i-alkyl chains but with a quite different surface-

binding head group. 

Our group has previously shown that isocyanides are readily adsorbed 

fi:om solutions to Au powder and bind to the Au surface in an end-on fashion 

through the terminal carbon. A later report demonstrated that the 

equilibrium constants for the reversible adsorption (eq 1) of electronically 

inequivalent isocyanides could be obtained using the Langmuir isotherm 

technique. 

Au(s) + RNC ^ Au(s)/(RNC) (1) 

Initially, several allg^lisocyanides (RNC = n-C^HgNC (C4NC), n-CgHiaNC 

(CgNC), n-CgHi^NC (CgNC), n-CijHasNC (C^jNC), and (CigNO) 

were sjnathesized to examine the effect of tail length on Au powder adsorption.^ 

It was observed that the length of the alkyl chain affected not only the Au 
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surface binding affinity, but also the rate of surface saturation and satiiration 

coverage values. Direct competition studies were also studied using a "C 

labeled isocyanide (CuNC*). These studies demonstrated the stabilization 

afforded by substrate-substrate packing forces in SAM's formed by the longer 

chain isocyanides. 

In a second study, di and triisocyanides were s37nthesized to determine 

the effect that the length of the connecting link (i.e. # of (-CHj-) groups) and the 

nximber of isocyanide groups (as points of attachment) have on Au adsorption 

stability. Reports have shown that diisocyanides with flexible backbones such 

as CSN-(CH2)6-NSC and CSN-(CH2)I2-NHC bind to Au through both -NsC groups 

producing a SAM with a smaller ehpsometric thickness than a diisocyanide 

with an inflexible backbone such as 1,4-phenylene-diisocyanide. Our work in 

this area describes the binding modes, relative binding affinities (Q^b) and 

surface coverage values for a series of flexible alkyl and xylyldiisocyanides on 

Au powder surfaces. 
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